

Prospective analysis with technology oriented models for long term energy assessment

Low carbon development and energy access in Africa African Pavillon – COP 17 Durban

Edi Assoumou et al.

6 Decembre 2011

Chair Modeling for Sustainable Development ParisTec

INSTITUT DES SCIENCES ET TECHNOLOGIES PARIS INSTITUTE OF TECHNOLOGY

Why prospective models matter to sustainable development?

- Catch the systemic relations between different subsystems (sectors, regions, countries)
- More detailed models for tailored insights: downscaling world level studies
- Decision support tool for a problem that gets more complex
- Knowledge production

Linking systems and subsystems

Why technology oriented models?

Finding the right technology mix is crtitical

Source: IEA ETP 2010

Why technology oriented models?

Example of alternative technology pathway

Our modeling principle

- Total discounted cost minimisation under constraints
- Based on TIMES model generator
- Technologies as basic subsystem

Our modeling principle

- Industrial/fast developing/ developing countries perspective
- S. Selosse, Nadia Maïzi, Edi Assoumou
- World model TIAM-FR (french version of the ETSAP-TIAM model): 15 regions
- Multisectoral

2°C objective expressed since COP15 induces CO₂ mitigation policies which involve transformation of the world energy system and technological options

Effectiveness of climate policy

- Will promised emissions reductions be sufficient?
- Will a wider participation be required?

- Evolution of the energy system
 - What will be the future energy mix?
 - What technological choices?
- Developed and developing countries perspectives
 - What shares of contribution?

A global scenario in line with the 2°C objective : Glob50 Limiting the world CO₂ emissions to 50% in 2050 by comparison with 2000

A regional scenario considering post COP15 pledges in 2020 and assuming new targets for 2050: COP15

The lower CO₂ mitigation targets by 2020 expressed by Europe, the USA, Australia, Canada, Japan, China and India and assumptions in 2050 representing the international convergence in terms of mitigation

A coupled regional and global scenario: **GlobCOP15** COP15 coupled with Glob50

- COP 15 pledges expressed here are not sufficient to reach the global UNFCCC objective
- A wider CO₂ mitigation is required but by who?

A global scenario in line with the 2°C objective : Glob50 Limiting the world CO₂ emissions to 50% in 2050 by comparison with 2000

A regional scenario considering post COP15 pledges in 2020 and assuming new targets for 2050: COP15

The lower CO₂ mitigation targets by 2020 expressed by Europe, the USA, Australia, Canada, Japan, China and India and assumptions in 2050 representing the international convergence in terms of mitigation

A coupled regional and global scenario: **GlobCOP15** COP15 coupled with Glob50

Regional distribution of CO_2 emissions (Gt CO_2) and avoided CO_2 (by comparison with BAU)

Period	Scenario	Industrialized countries		Fast developing countries		Developing countries	
		(AUS, CAN, EEU, JPN, USA, WEU)		(CHI, IND)		(AFR, CSA, FSU, MEA, MEX, ODA, SKO)	
		CO2 level	Avoided CO2	CO2 level	Avoided CO2	CO2 level	Avoided CO2
2020	BAU	11,6		7,9		9,1	
	COP15	9,5	2,1	7,5	0,4	9,2	-0,1
	Glob50	10,1	1,6	6,5	1,4	6,2	2,9
	GlobCOP15	9,4	2,2	6,9	1,0	6,3	2,8
2050	BAU	14,5		17,9		14,7	
	COP15	2,2	12,3	5,3	12,6	14,9 -7	7% -0,2
	Glob50	3,2	11,3	4,7	13,2 -70	6 3,3	11,4
	GlobCOP15	2,0	12,5	4,8	13,1	4,4	10,3

- Industrialized countries: Higher pledges than CO₂ emissions mitigation required by Global climate policy (flexibility mechanisms)
- Developing countries: -58% of CO₂ emissions reduction in 2050 by comparison with 2005 for Glob50 and -45% for GlobCOP15

Technology insight: electricity production in TWh

Fast developing

COP15

2020

Glob

COP15

countries

0

Glo50

8

82

Glo50

COP15

2050

Glob

COP15

Technology insight: downscaling issues

• Fast developing countries

Technology insight: downscaling issues

 More downscaling: improvement are needed to really assess Africa's potential

Conclusion: building and improving tools for thinking together

Prospective models are very usefull decision support tools for strategic planning

Broadly used in Annex 1 countries and more and more use in china

Without accurate diagnosis no accurate projection

Several initiatives create the favorable context for larger use in Africa:

- NECTAR
- ATPS
- Christine Heuraux, L'électricité au cœur des défis africains
- Interesting work from cape town university: Costing a 2020 target of 15% renewable electricity for South Africa