Results

ParisTech's Chair Modeling for sustainable development

11/12/2013

1 / 39

Following the trend or changing the french paradigm?: future prospects for nuclear power in France

Nadia Maïzi Edi Assoumou

Center for Applied Mathematics, MINES ParisTech, FRANCE Chair ParisTech on Modeling for Sustainable Development

UNFCCC ParisTech Side Event

Combating climate change with or without nuclear power

N. Maïzi et al. (MINES ParisTech)

French paradigm

ParisTech's Chair Modeling for sustainable development

イロト イポト イヨト イヨト

French electricity generation sector

dominated today by nuclear power

Installed	thermal	thermal	thermal	Hydro	wind	Solar
Capacities 1/1/2011	nuclear	fossil	Ren	power	power	PV
(GW)	63.1	27.1	1.2	25.2	5.8	0.9

Electricity Generation Shares

- \sim 500 TWh $\,:\,$ Global production
- \sim 400 TWh : Nuclear thermal production (80%)
 - \sim 30 TWh : Classical thermal production (coal and figul)

N. Maïzi et al. (MINES ParisTech)

COP 19

11/12/2013 3 / 39

Nuclear power replacement is the main driver for the future

N. Maïzi et al. (MINES ParisTech)

COP 19

Replacement of nuclear existing capacities

Fukushima triple disaster has opened the debate

- Ifetime : discussion has moved from 30 to 60 years
 - debate in 1999 : between 30 and 40 years [Bataille, Galey 1999] (nominal 30)
 - today discussions : between 40 and 60 years
 - more than 40 years submitted to ASN (french nuclear safety agency) agreement

In October 2011, The Ministry for Energy asked for a study in order to assess different options for the future nuclear power in France including **phase-out** options

France in Europe : an interconnected grid

French Net Exportation : \sim 70 TWh

Nuclear Phase out

< ロト (個) (三) (三)

- Germany : in 2022
- Switzerland : in 2035
- Italy : voted in 2011

11/12/2013

6 / 39

Figure : Contractual Exchanges between European borders in 2010 $_{\mbox{source RTE}}$

N. Maïzi et al. (MINES ParisTech)

Installed capacities are already reaching a critical point

Reliability issues

Missing capacities to meet the demand: foreseen in 2016

	2013	2014	2015	2016
Énergie de défaillance en espérance (GWh)	0.2	0.8	2.8	27.4
Espérance de durée de défaillance	0h05	0 h 22	1h14	8 h 50
Puissance manquante	-	-	-	2.7 GW

Figure : Reference scenario Source RTE/Bilan Prévisionnel 2011

TIMES as a Prospective tool

"What we have the right to ask a conceptual model is that is seize on the strategic relationships that control the phenomenon it describes and that it thereby permit us to manipulate, i.e., **think about the situation**"

Source: R. Dorfman, P. A. Samuelson, R. M. Solow

ParisTech's Chair Modeling for sustainable development

11/12/2013

8 / 39

Competitions, substitutions and coherence

TIMES

A technical linear optimization model, open-source developed in the framework of ETSAP: Energy Technology Systems Analysis Program initiated by the IEA (in 1980)

- demand driven
- on a long term horizon: (50/100 years)
- in order to achieve a technico-economic optimum minimizing the overall actualized cost of the reference energy system

satisfying a set of relevant technical constraints (peak reerve for the power system,...)

(日) (周) (三) (三)

Figure : The Integrated MarkAl (market allocation)-EFOM Reference Energy System

The use of scenarios: prospective versus prediction

Energy planning modelling through TIMES enables to:

- envision all the possible futures
- in order to **lighten** tomorrow's consequences of today's choices and decisions
- Instead of using scenarios kept in a stock
- each question requires a flow of dedicated scenarios, to assess a future power system

Desirable, Plausible, Sustainable

N. Maïzi et al. (MINES ParisTech)

Assessing the future of nuclear power for France

Three scenarios existing nuclear power plants

Maintain = BAU

nuclear capacity is maintained to 65 GW (lifetime of existing capacities extended to 60 years and replaced when needed)

Progressive Phase-out= PROG:

lifetime of existing capacities limited to 40 years for one plant over two; the others are extended to 60y with a cost of 600Billions \in /plant

o fast phase-out = FAST: lifetime limited to 40 years

Nuclear residual capacities according to three options

Figure : FAST (lifetime 40y) PROG (lifetime 40y to 60y) BAU (lifetime 60y)

N. Maïzi et al. (MINES ParisTech)

COP 19

11/12/2013 12 / 39

Assessed Scenarios for the French Power System

Scenarios	CO ₂	Elastic	Nuclear	Common
	Constraints	Demand	Status	assumptions
				Prices
BAU	ETS tax	Reference	Maintained	WEO 2010
			Progressive	
PROGt1	taxe ETS	yes	Withdraw	Demand
	ETS tax		Progressive	reference тso (RTE)
PROGv1	+ cap BAU	yes	Withdraw	
			Fast	Variable
FASTt1	ETS tax	yes	Withdraw	exports 40 to 50 €
	taxe ETS +		Fast	
FASTv1	+ cap BAU	yes	Withdraw	

3 K 3

Prospective analysis of the results ... at face value

ParisTech's Chair Modeling for sustainable development

 $\exists \rightarrow$

14 / 39

11/12/2013

Nuclear lifetime sensitivity analysis

Figure : Power Mix generation $(CO_2 tax)$

Nuclear as a zero-emission solution

Figure : Sensitivity of the CO₂ emissions of the power sector

イロト イロト イヨト イヨト

Nuclear lifetime sensitivity analysis : tax + cap

Figure : Power Mix generation $(CO_2 tax + cap)$

11/12/2013

18 / 39

Huge investments are needed

new generation capacities to secure power supply

Figure : Lump sum of Power Plants Capacities (with=extended nuclear plants)

N. Maïzi et al. (MINES ParisTech)

New capacities Investments to maintain 65 GW

Figure : New installed capacities BAU

∃ >

New capacities Investments for a fast phase-out

Figure : New installed capacities FASTv1 (lifetime 40y, tax + cap)

France net exportations are always decreasing

Figure : Exports/Domestic demand (CO₂ tax)

France net exportations are always decreasing

Figure : Exports/Domestic demand ($CO_2 tax + cap$)

Beyond the classical results: reliability issues

ParisTech's Chair Modeling for sustainable development

11/12/2013

23 / 39

・ 何 ト ・ ヨ ト ・ ヨ ト

Future Power System : Reliability of electricity supply

Figure : Europe from orbit during the Italian blackout (Sept. 28th, 2003). Source: French TSO.

Technical constraints binding the operation of the future power system are related to:

- the given level and spatial distribution of loads and capacities;
- the expected level of reliability to prevent from power outages.
- Where reliability is the capability of the power system to withstand sudden disturbances due to load fluctuations.

Assesing future power systems : dynamics issues

Stability studies

involve time scales ranging from a few milliseconds to a few hours

Long-term planning models

deal with several years or decades

The level of reliability of the power system can be derived from

- the dynamic properties of the installed capacities
- the associated inertia of the system (kinetic and magnetic)
- the load profile.

characterized by H :

the time you have to recover the stability of the system after a load fluctuation by monitoring its reserves.

Assesing future power systems dynamics issues

Stability studies

involve time scales ranging from a few milliseconds to a few hours

Long-term planning models

deal with several years or decades

The level of reliability of the power system can be derived from

- the dynamic properties of the installed capacities
- the associated inertia of the system (kinetic and magnetic)
- the load profile.

characterized by H :

the time you have to recover the stability of the system after a load fluctuation by monitoring its reserves.

ty robustness of the power mix - nuclear sensitivity

Magnetic reserves

N. Maïzi et al. (MINES ParisTech)

COP 19

11/12/2013 26 / 39

Kinetic and magnetic reserves for peak periods

Kinetic Reserves

Magnetic Reserves

N. Maïzi et al. (MINES ParisTech)

COP 19

11/12/2013 27 / 39

Changing the paradigm, from power mix to consumer

ParisTech's Chair Modeling for sustainable development

A B K A B K

< 47 ►

Consumption, Consumers : the key issues I

- In order to cope with climate mitigation issues, some technological options are highly recommended and the discussion opposes renewable energy and nuclear supporters;
- the main outcome of the study delivered to the french Ministry of Energy as it was related by journalists was the recommendation to extend nuclear power plant lifetime to 60y;
- technical issues such as reliability level might be part of the debate as they give insights about feasibility and relevance of future power mix;

Consumption, Consumers the key issues II

Beyond technical issue, reliability also speaks about **quality of supply the load profile level of supply** that refer to the end of the chain : consumption usage and requirements.

A balance between reliability issue and the spread of renewable energies is required but it has to be related to consumer needs which must be at the center of the debate.

Contact nadia.maizi@mines-paristech.fr

Web Site http://www.modelisation-prospective.org/index_en.html

ParisTech's Chair Modeling for sustainable development

11/12/2013

31 / 39

Prices and Carbon Tax Assumptions

Final electricity consumption forecast 2050 = Demand scenario forecast (Source: RTE (french TSO)/BP July 2011.)
Fix Carbon Tax 20 €/T according to ETS levels

Fossil ressources prices : WEO 2010

unit		2010	2020	2030	2040	2050
\$/tep	oil	60.4	99.0	110.0	117.2	125.2
\$/MBTU	gas (EU)	7.4	11.6	12.9	13.8	14.9
\$/tonne	coal	97.3	101.7	105.6	107.7	110.0

Nuclear lifetime sensititivity : new capacities

Figure : Capacities (CO₂ tax)

Nuclear lifetime sensititivity

Figure : Capacités $(CO_2 tax + cap)$

New installed capacities (without extended nuclear plants)

Figure : New installed capacities

11/12/2013 35 / 39

Figure : Overcost total actualised cost (in 2011) as compared to BAU

Sensitivity ana

lysis of reliability issues

Kinetic Reserves

Magnetic Reserves

N. Maïzi et al. (MINES ParisTech)

11/12/2013 37 / 39

Reliability kinetic reserve for winter peak

3.5 3

Reliability magnetic reserve for winter peak

∃ >