Journée de la Chaire Prospective pour les enjeux Énergie-Climat Mercredi 17 Novembre 2010

Modéliser la gestion de l'eau face au changement climatique : les leçons d'un essai sur le bassin méditerranéen

Hypatia Nassopoulos, Patrice Dumas, Stéphane Hallegatte

<u>nassopoulos@centre-cired.fr</u> <u>dumas@centre-cired.fr</u>

CIRED / CNRS, CIRAD, Météo France

Mediterranean region, climate change and water resources

 \geq 7% of world's population

>3% of water resources

➢ Major driver: socioeconomic changes

➢Also reduction of precipitation and ETP increase

→Optimal dimensioning of hydraulic infrastructure under CC
→Quantification of changes and influence of operating rules adaptation

Some specifics on economics of water resources systems

Supply side

- > Site specific potential resources at the basin level
- Costly and « constrained » trans-basin transportation
- > Hydraulic infrastructures increases the reliable available water.
 - High investment costs
 - Moderate costs of management and maintenance

Demand side

- **Consumptive** and **non-consumptive** uses: hydroelectricity, power plant cooling, agriculture, industry, domestic, sanitation, recreation, landscape, navigation
- Swamped effect of price signals
- Economic structure, demography are the main drivers

Tensions on water in a Climate change context

Increasing episodes of droughts

➢ Model of water management under large uncertainty in view of a coupling with

≻GCM/RCM

>Activity models (agriculture, electricity, industry)

≻Hybrid macroeconomic model

- Problem of scale integration
- > Site specific nature of water management

 \blacktriangleright Large scale determinants and impacts , GCM and economic models coarse resolution

Modeling adaptation of water management to droughts under climate change; step by step approach

- Changes of future water demand at constant economic activity levels to represent vulnerability (*Regional level*)
- Adaptation of water supply through changes in reservoirs management only (*Regional level*)
- Modification of dimensions of dams and reservoirs => assessment of the risk of sunk costs (generic model tested on a case study)
- Coupling demand projection with partial equilibrium (activity) models
- Introduction of the "nexus" into a hybrid general equilibrium model to study the propagation effects

Part I: Dam dimensioning under climate change

Dam dimensioning under climate change and climatic model uncertainty

- Several climatic models, coarse resolution of GCMs, downscaling problem
- Uncertainty due to climate models diversity

Assessment of optimal dam dimensioning under climate change

- How does uncertainty affect hydraulic infrastructure dimensioning?
- Generic model applied to a catchment with one reservoir
- Cost- Benefit Analysis (NPV maximization) as criterion for dimensioning and robust decision making
- Climate Change modeled as a succession of stationary climates
- Demands adapts to available supply

What is the change in optimal volume storage of reservoirs?

		Reservoir length	4km			10 km			20km		Runoff	
		Pure time preference	0%	3%	6%	0%	3%	6%	0%	3%	6%	change
		BCCRBCM20	-10	-6	-3	-12	-7	-7	-8	-8	-2	-8
		CCCMACGCM31	-9	-4	-3	-15	-5	6	-16	-10	-1	-12
		CNRMCM3	-23	-12	-12	-23	-14	-10	-23	-13	-7	-20
		CSIROMK30	-14	-9	-5	-16	-10	-8	-11	-10	-3	-11
		CSIROMK35	-10	-6	-3	-12	-6	-7	-9	-9	-1	-9
	GFDLCM20	GFDLCM20	-10	-3	-3	-14	-6	-4	-25	-9	-1	-15
19 climatic models		GFDLCM21	-17	-7	-6	-21	-10	-8	-34	-12	-3	-21
		GISSMODELER	-15	-9	-6	-21	-10	-8	-25	-11	-3	-19
		INGVECHAM4	-17	-10	-8	-22	-11	-9	-17	-12	-4	-18
		INMCM30	-4	-2	-1	-4	-2	-3	-5	-4	-1	-4
		IPSLCM4	-17	-10	-7	-20	-11	-8	-17	-11	-4	-17
		MIROC32MEDRES	-5	-2	-1	-6	-2	-3	-8	-7	-1	-6
		MIUBECHOG	-17	-10	-7	-18	-10	-9	-14	-10	-4	-13
		MPIECHAM5	-17	-10	-7	-22	-11	-8	-26	-12	-4	-20
		MRICGCM232A	-6	-3	-1	-7	-2	-4	-9	-8	-1	-7
		NCARCCSM30	-8	-4	-2	-12	-4	-5	-11	-9	-1	-9
		NCARPCM1	2	2	0	1	1	1	-9	-1	1	-1
		UKMOHADCM3	-6	-3	-2	-10	-3	-4	-13	-9	-1	-9
		UKMOHADGEM1	0	0	0	$\left(0 \right)$	0	(0)	0	0	0	-0
						' V		\sim				

Table 3: Change in optimal volume storage relative to a case with no climate change, for three valley lengths, three rates of pure time preference, and 19 IPCC models.

Investment under uncertainty, risk of sunk costs and maladaptation: How to make robust decision?

Valley length	10km							
« Pure Time Preference »	0%	3%	6%					
Max NPV loss	-23%	-18%	-14%					
Min NPV loss	0%	0%	0%					

- Low total cost of dimensioning mistakes (0.26-2.83%)
- But potentially substantial and very uncertain welfare loses
- Robust choice by minimizing the error cost but adaptation efforts do not help a lot in case of large changes in precipitation

Part II: Prospective of water availability in the Mediterranean region

Analysis of Supply and Demand imbalances: could reservoirs operating rule adaptation reduce climate change impacts?

- Spatial and temporal heterogeneity
- \rightarrow generic model, multiple scale integration
- High anthropization \rightarrow operating rules adaptation

Methodology:

- Demands location
- Demands projection
- Reservoirs network, sub-basins, inflows
- Reservoir-demand links
- Operating rules

Demands

Demands location

- Population (CIESIN), power plants (CARMA), Global Map of Irrigated Areas (Aquastat)
- Exogenous drivers (based on WATERGAP) :Domestic, power plants cooling, Industry
 - GDP, population (IMF), past consumption (Eurostat, Plan Bleu), electricity production (IEA),, water use intensity, Added value (Enerdata, GTAP, World Bank), past intensity (Eurostat, Plan Bleu)
- Irrigation : Present surfaces, climate change
 - Land use (FAO Agromap, Faostat)
 - Phenology: Growing degree days
 - Evapotranspiration : Heargrave (FAO Irrigation and Drainage paper N°56)
 - Irrigation fills the deficit between evapotranspiration and effective precipitation

Reconstructing reservoir network and associating reservoirs and demands

27000 Demand nodes (3500 in North Africa), 525 Supply nodes (140 in North Africa)

- No detailed network information, reconstruction based on dams and demands data
- Reservoirs network, sub-basins, inflows (hydro1k, ICOLD, CIRCE climatic models)
- Reservoirs Demands (cost function, penalizing distance and altitude difference)
- > Only one reservoir is selected for each demand (cost minimization, mean inflow = mean demand)
- > In the African region, the share of demands associated to a reservoir are:
 - > 89% of power plants
 - > 81% of irrigated surfaces
 - > 87% of population

Supply and Demand Network: illustration on Morocco

Modeling Operating rules

- Determined at the river basin scale
- No priorities among demands
- Objective: Reliability maximization
- Optimization of the parameters of empty space allocation among reservoirs in parallel

Change of reliability under CC: North Africa

case

 $\Delta \text{Re} \text{liability} = \text{Re} \text{liability}_{cc} - \text{Re} \text{liability}_{no_cc}$

Perspectives

- Representation of non consumptive water uses
- Groundwater representation
- Coupling with Agricultural model using water extraction costs and irrigation benefits
- Adaptation of demand (capital, activities) according to available supply
- Link investments in the electricity sector and intra-annual water demand for hydroelectricity and power plant cooling to water supply
- Floods integration
- Optimal dimensioning of reservoirs, under uncertainty

THANK YOU!

