

Contrôle de la mobilité et objectifs de décarbonation en Chine

Meriem Hamdi-Cherif hcmeriem@centre-cired.fr

Journée de la Chaire

Prospective pour les enjeux Energie-Climat

Lundi 2 mars 2015

MINES ParisTech - PARIS

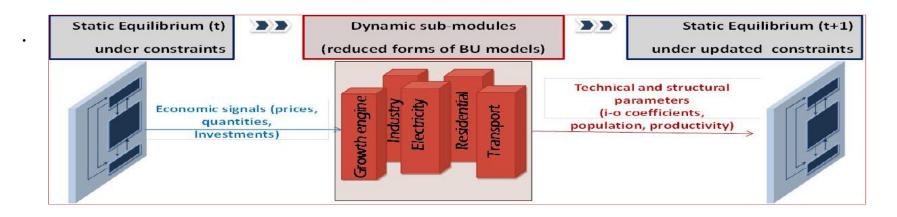
Contexte/Motivation

- ➤ Le **développement économique chinois** va de pair avec:
 - (i) Une croissance de la production Accompagnée d'une augmentation du transport de FRET
 - (ii) Une population qui s'enrichit (classe moyenne importante)
 et une urbanisation galopante
 Induisant une augmentation accrue de la demande en transport de passager (augmentation importante du taux de motorisation)
- Le secteur Transport est un secteur crucial pour la CHINE
 - Forte dépendance aux Energies Fossiles (produits pétroliers)
 - Demande d'énergie en croissance continue
 - Emissions de CO2 croissantes
 - → Particulièrement concernant les problématiques de Sécurité Energétique et de Changement Climatique

Motivation/Objet

- > Dans sa volonté d'assurer un développement soutenable/durable
 - → Le secteur transport représente en effet un grand challenge pour la Chine.
- Afin d'éviter des "lock-ins" importants dans des sentiers de développement très carbonés...
 - ... en particulier à cause de
 - ✓ Forte disponibilité du charbon
 - ✓ La durée de vie importante des infrastructures
 - → La Chine doit redoubler d'efforts ...

...avec des politiques volontaristes visant à promouvoir des mesures de contrôle de la mobilité


Motivation/Objet

- > Dans sa volonté d'assurer un développement soutenable/durable
 - → Le secteur transport représente en effet un grand challenge pour la Chine.
- Afin d'éviter des "lock-ins" importants dans des sentiers de développement très carbonés...
 - ... en particulier à cause de
 - ✓ Forte disponibilité du charbon
 - ✓ La durée de vie importante des infrastructures
 - → La Chine doit redoubler d'efforts ...
 - ...avec des politiques volontaristes visant à promouvoir des mesures de contrôle de la mobilité
- L'objet de ce travail est d'explorer le rôle des activités de transports dans la transition vers société chinoise sobre en carbone.
 - → On tente ici de quantifier l'impact de politiques urbaines volontaristes sur les coûts de mitigations chinois
 - → Une attention particulière est portée sur les mesures spécifiquement dédiées au contrôle de la mobilité

The role of transport in low-carbon pathways Methodology and Modeling approach

- **IMACLIM-R** → modèle Energie-Economie-Environnement (E3)
 - → permet une représentation explicite des interactions entre:

Transport, Energie et Croissance

- Modèle d'Equilibre Général: Hybride, multi-region, multi-secteur, Dynamique et Recursif
- Prise en compte de la nature "second rang" des interactions économiques et des inerties sur les systèmes techniques (qui limitent la flexibilité des ajustements)
- Repose sur des matrices hybrides assurant la cohérence entre flux monétaires et quantités physiques (Mtep, pkm et tkm)
- Embarque une description détaillée du transport de passagers et de Fret

Le transport dans IMACLIM-R

La représentation standard des technologies de transport ...

... est complété par une représentation explicite des **déterminants** 'comportementaux' de la mobilité

Maximisation de l'Utilité:

$$U_{k}\left(\vec{C}_{k}, \vec{S}_{k}\right) = \prod_{\substack{\text{goods } i \\ \text{services } j}} \left(C_{k,i} - bn_{k,i}\right)^{\varsigma_{k,i}} \left(S_{k,j} - bn_{k,j}\right)^{\varsigma_{k,j}}$$

$$S_{k,mobility} = \left(\left(\frac{pkm_{k,air}}{b_{k,air}} \right)^{y_k} + \left(\frac{pkm_{k,public}}{b_{k,public}} \right)^{y_k} + \left(\frac{pkm_{k,cars}}{b_{k,cars}} \right)^{y_k} + \left(\frac{pkm_{k,nonmotorized}}{b_{k,nonmotorized}} \right)^{y_k} \right)^{-y_k}$$

Double contrainte:

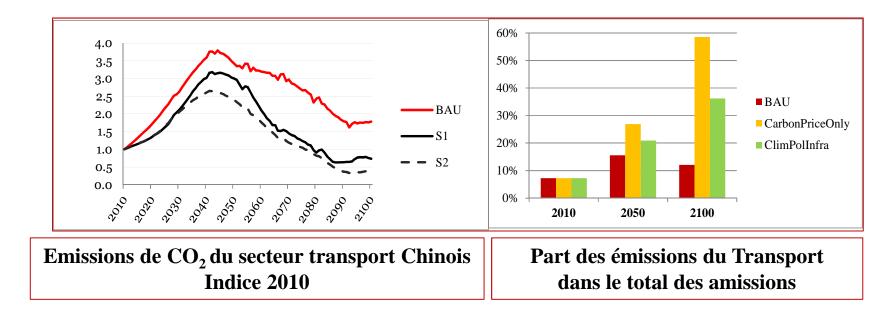
$$ptc_{k} \cdot Income_{k} = \sum_{i} pArmC_{k,i} \cdot C_{k,i} + \sum_{\text{Energies } Ei} pArmC_{k,Ei} \cdot \left(S_{k}^{cars} \cdot \Gamma_{k,Ei}^{cars} + S_{k}^{m^{2}} \cdot \Gamma_{k,Ei}^{m^{2}}\right)$$

$$Tdisp_{k} = \sum_{\text{means of transport } T_{j}} \int_{0}^{pkm_{k,T_{j}}} t_{j}(u) du$$

Capacité=fonction (infrastructures, équipements)

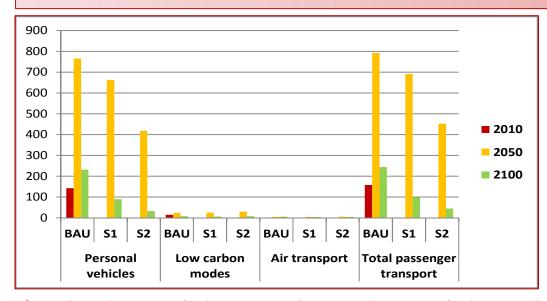
Le transport dans IMACLIM-R

Cette représentation ...


Le dialogue entre la structure *top-down* et les modules *bottom-up* permet de représenter :

- Les effets rebond induits par les améliorations d'efficacité énergétique de la mobilité
- Choix modaux endogènes en fonction de la disponibilité des infrastructures
- L'impact des investissements dans les infrastructures sur les distances parcourues
- Les contraintes imposées sur la demande de mobilité par la localisation des firmes et des ménages (formes urbaines)

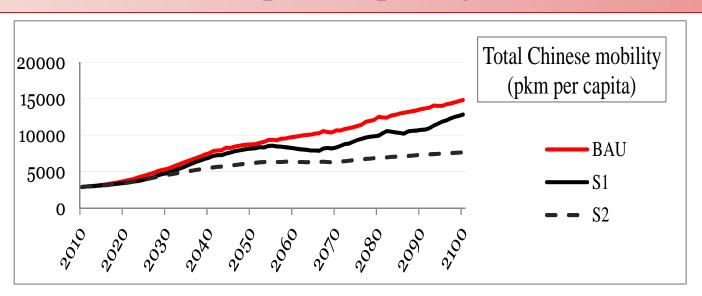
Evaluer les effets de mesures de contrôle de la mobilité sur l'économie Chinoise **Trois mondes considérés**


- Référence: Business-As-Usual (BAU)
- ➤ Un objectif climatique contraignant (3.4W/m² in 2100) / une politique "carbon price only" pour atteindre l'objectif (S1)
- En complément au prix du carbone ...
 - ... mise en place de politiques de réaménagements urbains visant à contrôler les déterminants 'comportementaux' de la demande de mobilité (S2):
 - (i) Réorganisation urbaine permettant la baisse de la mobilité contrainte (i.e. trajets domicile-travail, courses)
 - (ii) Réallocation des investissements dans les infrastructures en faveur des transports publiques
 - (iii) Ajustements dans l'organisation logistique afin de réduire l'intensité en transport des process de production/distribution

De l'importance du secteur transport dans la transition bas-carbone

- Décroissance des émissions dans la seconde moitié du siècle...population...
- Malgré cette décroissance ...
 - ... Les émissions de transport représentent une part importante des émissions restantes (60% dans S1 et 37% dans S2)
- Effet des mesures sur le la mobilité: les émissions de S2 sont inférieures sur toute la période

Transport de passagers



Emissions de CO₂
des transport de passager en Chine
(MtCO₂)

Low carbon modes (public transport + non-motorized)

- Quelque soit le scenario, quelque soit le mode de transport...
 les émissions augmentent considérablement durant la première moitié du siècle
- Alors qu'elles demeurent au-dessus de leur niveau de 2010 en BAU ... Elles baissent considérablement dans les scenarios de stabilisation, Surtout dans S2! (-37% dans S1 et -72% dans S2)
- Quels mécanismes ?
 - L'évolution de la mobilité passager
 - Structure modale
 - Amélioration de l'efficacité énergétique et l'électrification du parc automobile

Transport de passagers

- L'augmentation rapide de la mobilité en 'baseline' ...
 - ... n'est que peu affectée par la politique climatique lorsque le prix du carbone est le seul instrument utilisé (-7% en 2050 et -13% en 2100)
 - → Limitation de la hausse des prix des carburants (baisse de la demande de pétrole et de charbon induite par la politique climatique)
 - → Forte inertie de l'organisation urbaine

 (La mobilité contrainte ne peut pas changer du jour au lendemain!)
- La mobilité dans S2 est nettement inférieure (-29% en 2050 et -48% en 2100)
 - → mesures restreignant l'étalement urbain

Transport de passagers Répartition modale

	2010	2050			2100		
		BAU	S1	S2	BAU	S1	S2
Pesonal vehicles	28%	78%	74%	60%	92%	88%	67%
Low carbon modes	72%	22%	25%	39%	7%	11%	31%
Air transport	0.2%	0.3%	0.4%	0.6%	0.6%	0.7%	1.5%

Répartition modale de la mobilité passager en Chine

> S1 et BAU assez similaires!

- → Réduction des prix du pétrole et du charbon Compense l'augmentation des carburants due au prix du carbone Le 'mode voiture' toujours accessible
- → Investissement dans les infrastructures routes

 Décroit la congestion

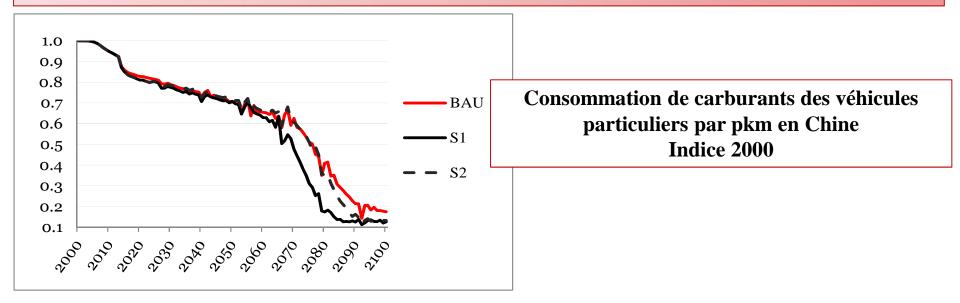
 Augmente l'attractivité de la voiture au détriment des autres modes

Transport de passagers Répartition modale

	2010	2050			2100		
		BAU	S1	S2	BAU	S1	S2
Pesonal vehicles	28%	78%	74%	60%	92%	88%	67%
Low carbon modes	72%	22%	25%	39%	7%	11%	31%
Air transport	0.2%	0.3%	0.4%	0.6%	0.6%	0.7%	1.5%

Répartition modale de la mobilité passager en Chine

- Avec des mesures permettant la réallocation des investissements dans les infrastructures en faveur des transports publiques:
 - → 'Shift' de la voiture vers les modes non motorisés

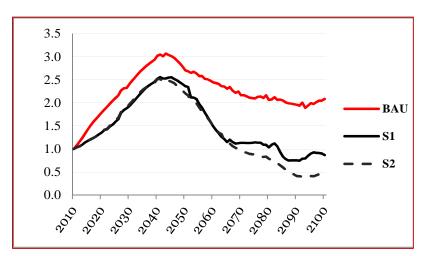

Transport de passagers Répartition modale

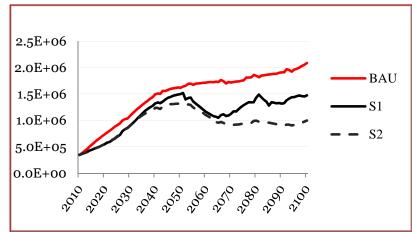
	2010	2050			2100		
		BAU	S1	S2	BAU	S1	S2
Pesonal vehicles	28%	78%	74%	60%	92%	88%	67%
Low carbon modes	72%	22%	25%	39%	7%	11%	31%
Air transport	0.2%	0.3%	0.4%	0.6%	0.6%	0.7%	1.5%

Répartition modale de la mobilité passager en Chine

➤ Bien que faible (1.5% en 2100), le mode aérien est nettement supérieur dans S2: Les besoins de mobilité sont réduits grâce à la restructuration urbaine, et peuvent être satisfaits par des modes plus doux: plus de budget temps et d'argent pour ...l'avion

Transport de passagers Efficacité des véhicules




- → Permet de capturer
 - → L'amélioration de l'efficacité énergétique des 'véhicules à carburants'
 - → L'électrification de la flotte via la diffusion des véhicules hybrides et électriques
- ➤ Dans S1, le prix du carbone permet une nette amélioration de l'efficacité des véhicules/BAU
- ➤ Effet beaucoup moindre dans S2, dû à
 - → Prix du carbone beaucoup moins élevé
 - → Turn-over de la flotte plus lent, car les voitures sont moins utilisées!

Transport de passagers Déterminants des réductions des émissions

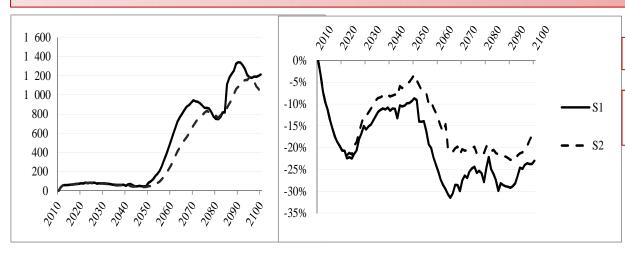
- → Très différents selon les politiques mises en place
- Si le prix du carbone est le seul instrument...
 le plus gros effet provient de l'efficacité énergétique des véhicules
- Lorsque les politiques complémentaires sont mises en place...
 le shift modal et la réduction de la mobilité sont les déterminants
 qui prédominent

Transport de FRET

Emissions de CO₂ du transport de fret Chinois Indice 2010

Transport de FRET en Chine (tkm)

- Résultats similaires...mais manque de temps!
- L'implémentation de mesures permettant la réorganisation logistique des process de production/distribution joue un rôle majeur dans la politique de mitigation.


Efforts de mitigation de l'économie

		2010-2050	2050-2100
Transports	S1	2.2%	-2.8%
Transports	S2	1.8%	-3.4%
Electricity	S1	-2.7%	-3.0%
Liectricity	S2	-2.3%	-2.3%
Industry	S1	-0.3%	-6.5%
illuustiy	S2	-0.1%	-6.2%

Variations moyennes des émissions Par période – Trois principaux secteurs émetteurs

- Sans mesures spécifiques visant à réduire la mobilité, les efforts de décarbonisation reposent essentiellement sur l'électricité et l'industrie.
- Les mesures complémentaires augmentent la contribution du transport dans les efforts de mitigation et permet aux autres de ralentir leur efforts

Quid des effets macroéconomiques?

Prix du CO2 (gauche)

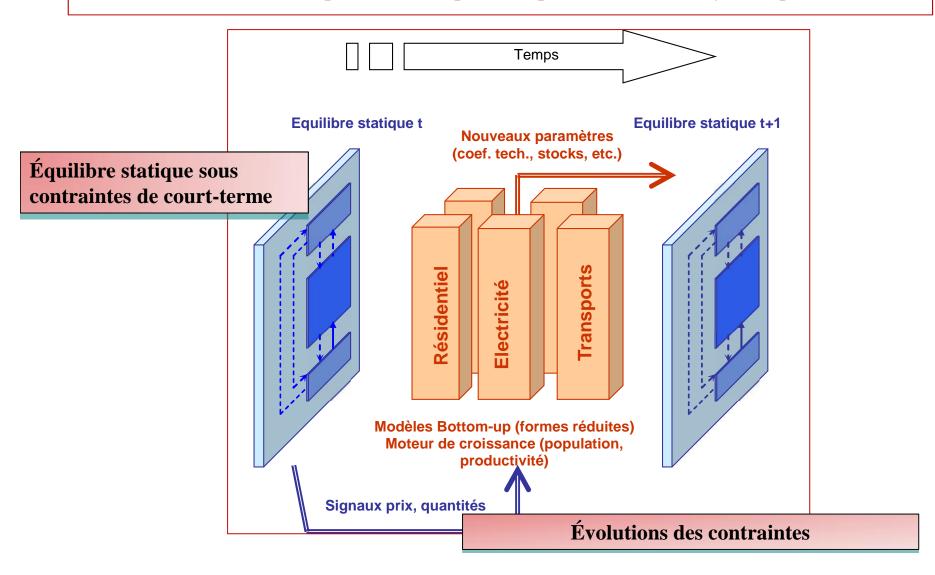
Variations de PIB / BAU (droite)

- > Très faible réactivité du secteur transport à l'augmentation des prix
 - → Nécessité d'avoir des prix du CO₂ très élevés pendant la seconde moitié du siècle afin d'atteindre l'objectif climatique
 - → Coûts macroéconomiques très importantes si le prix du CO₂ est le seul instrument utilisé
 - → La mise en place de mesures de contrôle de la mobilité offrent des potentiels de mitigations indépendants du prix du carbone
 - → Ces mesures permettent des réductions significatives du niveau des prix du carbone (en moyenne 25% plus bas sur 2050-2100)
 - → Réduction considérable des coûts macroéconomiques de la mitigation des émissions (les coûts sont réduits de 5 points en 2050 et de 10 points en 2100)

Conclusion

- Cette étude permet de souligner le rôle des transports dans les processus de réduction des émissions
- Etant donné un objectif climatique, ...
 - ... la mise en place de mesures qui permettent un 'shift' vers des modes de transport bas-carbone + un découplage entre besoins de mobilité et activité économique permet:
 - → Modification de la distribution sectorielle des efforts de réduction des émissions
 - → Contribution à éviter le risque d'un 'lock-in' sur un chemin de développement carboné
 - → Réduction significative des coûts macroéconomiques /politique 'carbon price only'
- → Des politiques d'infrastructures "volontaristes" et précoces ont un rôle à jouer comme une forme d'assurance contre le risque de coût élevé de la stabilisation nécessaire et sur laquelle la Chine semble s'engager...

Chaire Modélisation prospective au service du développement durable


Merci de votre attention

Meriem Hamdi-Cherif hcmeriem@centre-cired.fr

http://www.imaclim.centre-cired.fr/

IMACLIM-R - Une architecture récursive et modulaire :

succession d'équilibres statiques liés par des relations dynamiques

Salient features of the IMACLIM-R framework (1)

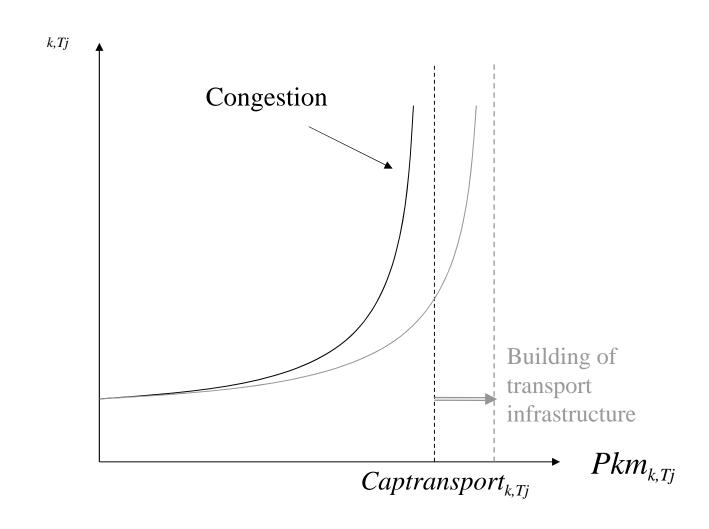
Improving the realism of the description of consumption patterns

- Energy consumption does not provide satisfaction by itself but through the **services** (light, heating, devices) it delivers.
- Transport consumption shows specific patterns: **Zahavi's law** (constant time-budget), rebound effect, congestion, modal choice.
- Energy consumption and transportation are driven and constrained by the **ownership of durables**, cars and square meters of housing (themselves driven by their prices)

Static equilibrium under short-run constraints: demand

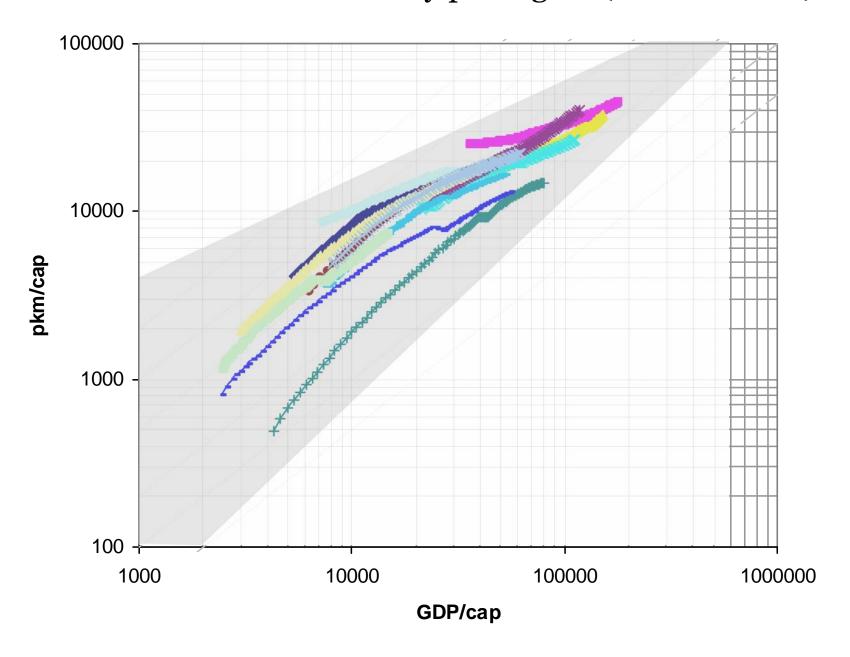
Utility maximization:

$$\boldsymbol{U_{k}}\left(\vec{C}_{k}, \vec{S}_{k}\right) = \prod_{\substack{\text{goods } i \\ \text{services } j}} \left(\mathbf{C}_{k,i} - b n_{k,i}\right)^{\varsigma_{k,i}} \left(S_{k,j} - b n_{k,j}\right)^{\varsigma_{k,j}}$$

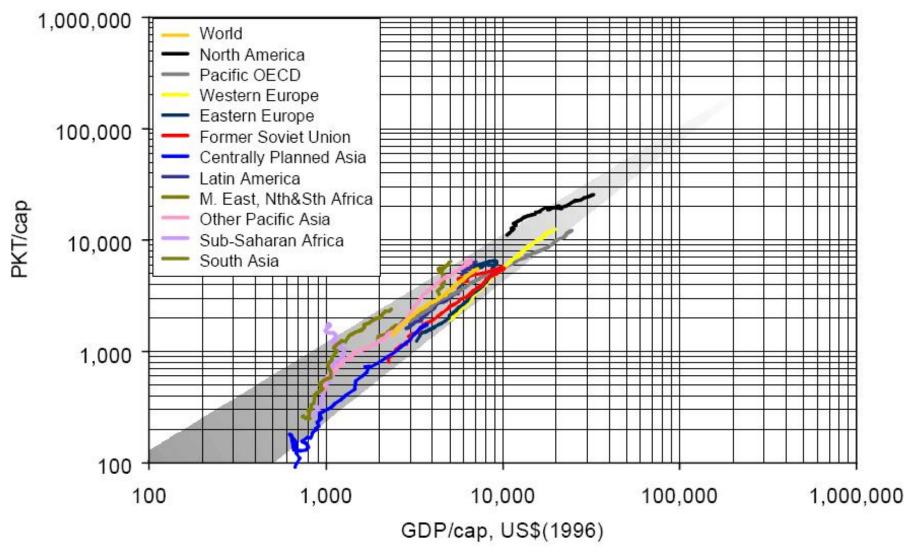

$$S_{k,mobility} = \left(\left(\frac{pkm_{k,air}}{b_{k,air}} \right)^{y_k} + \left(\frac{pkm_{k,public}}{b_{k,public}} \right)^{y_k} + \left(\frac{pkm_{k,cars}}{b_{k,cars}} \right)^{y_k} + \left(\frac{pkm_{k,nonmotorized}}{b_{k,nonmotorized}} \right)^{y_k} \right)^{-y_k}$$

Under two constraints:

$$ptc_{k} \cdot Income_{k} = \sum_{i} pArmC_{k,i} \cdot C_{k,i} + \sum_{\text{Energies } Ei} pArmC_{k,Ei} \cdot \left(S_{k}^{cars} \cdot \Gamma_{k,Ei}^{cars} + S_{k}^{m^{2}} \cdot \Gamma_{k,Ei}^{m^{2}}\right)$$

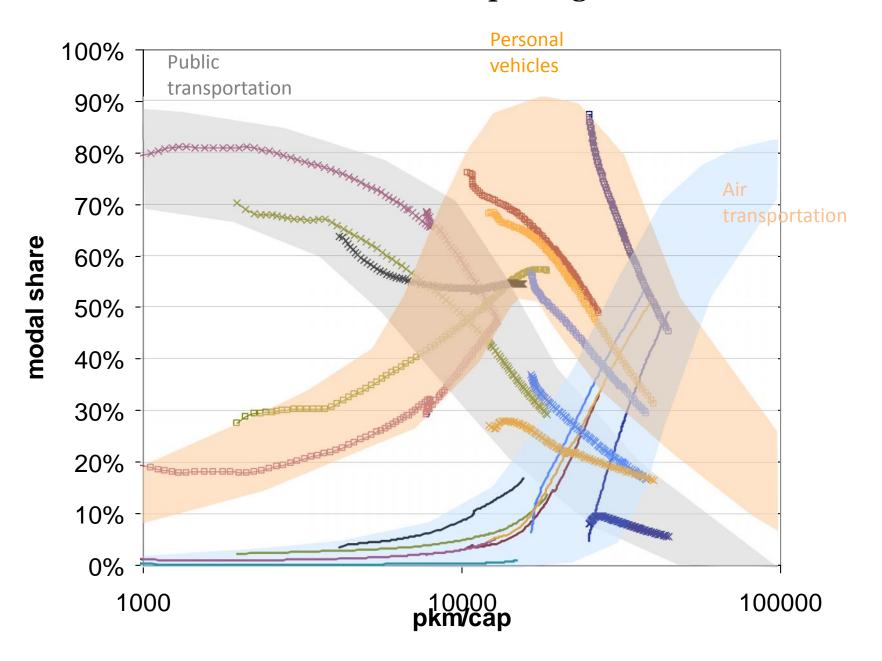

$$Tdisp_{k} = \sum_{\text{means of transport } T_{j}} \int_{0}^{pkm_{k,T_{j}}} t_{j}(u) du$$

Transport infrastructure and congestion

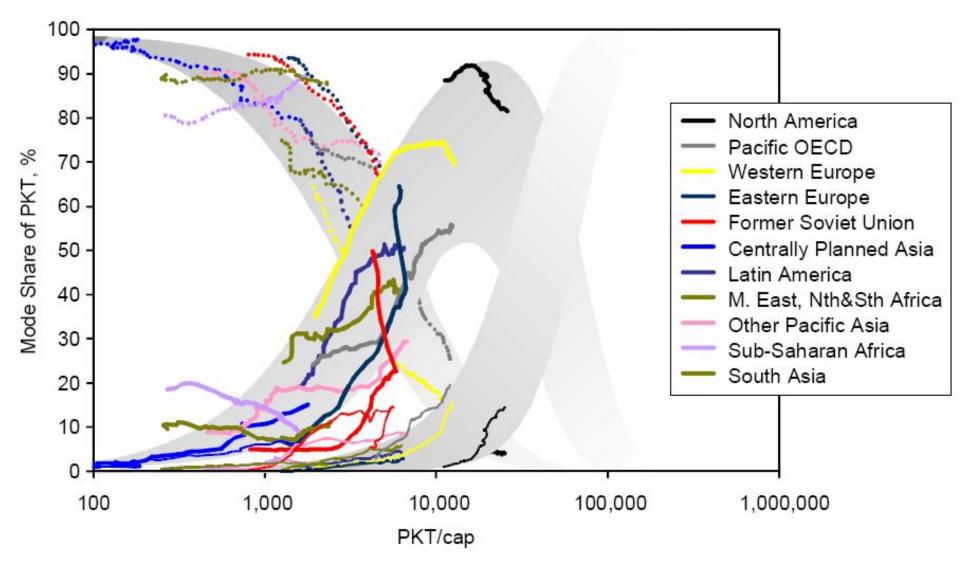


Illustrative results

Evolution of mobility per region (model results)



Evolution of mobility per region (historical data)



Source: Schäfer, 2007. Long-term trends in global passenger mobility.

Evolution of modal shares per region (model results)

Evolution of modal shares per region (historical data)

Source: Schäfer, 2007. Long-term trends in global passenger mobility.