

Baisse «surprise» des prix du pétrole? du bon usage de modèles prospectifs 'hybrides'

Florian LEBLANC

<u>leblanc@centre-cired.fr</u>

D'après :

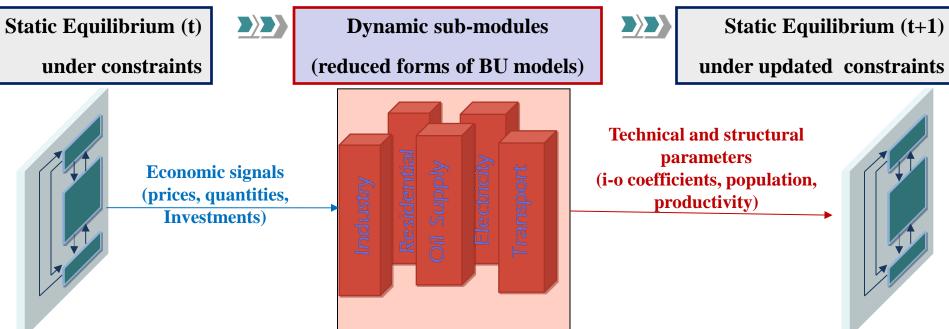
- Les travaux de H. WAISMAN, J. ROZENBERG, O. SASSI, JC HOURCADE (Peak oil profiles through the lens of a general equilibrium assessment. Energy policy – 48, 2012)

- Travaux complémentaires de F. Leblanc sur les ressources non-conventionnelles (en cours de révision)

A challenge: framing public debates in a structurally uncertain context

- Experts at risk of disqualification?
 - Peak Oil, inexorable rise of oil prices: a new mantra after (IEA 2008)
 - Emergence of shale oil & gaz + recent drop in oil prices
- o Or misuse of scientific analysis?
 - Not only a communication problem
 - A demand of "best guess" by fear of radical uncertainty
- What good use of models if prospective is not prediction?
 - Illustration based on published (2012) and recent works
 - Understanding the interplays between geological, technical, economic and geopolitical parameters and the links between Long Term and Short Term signals

Why (and how) modeling oil markets and technical change within a hybrid CGE model?


Fossil fuel markets and macroeconomy: integrating engineers' and economists' views

- Three disconnected strands of literature:
 - Technical and Geological-based analyses; Hubbert bell-shaped production curves + Energy systems modeling (demand addressed to fossil fuels)
 - Economic analysis of short term effects of oil shocks (Hamilton etc ...)
 - Long-term analysis of exhaustible resources, no peak oil (Hotelling)
- The modeling agenda
 - Endogenizing fossil fuels markets through the interplay between:
 - Technical inertia and imperfect expectation
 - Induced technical change (non fossil energies, infrastructures)
 - Strategic choices by OPEC (and other regions)
 - Representing the impact of the macroeconomy on oil markets: demand dynamics, profitability prospects and capital availability
 - Capturing the feedback of oil markets on macro-economy: energy trade and rents, structural change, effect on growth, employment and welfare

The IMACLIM-R model

- Hybrid matrixes in values, energy and « physical » content (Mtoe, pkm)
 - > Secure the consistency of the engineering based and economic analyses
 - Explicit accounting of inertias on equipment stocks
 - Endogenous and exogenous TC, technical asymptotes, basic needs
- Solowian growth engine in the long run but transitory disequilibrium
 - Unemployment, excess capacities
 - ➤ Investments under imperfect foresight (informed by sectoral models)
 - > Trade and capital flows under exogenous assumption about debts

Modeling geological constraints & producers' decisions

- Resource: 12 oil categories (conventional and unconventional)
 - ➤ Maximum rate of increase of production capacity for each category, given geological constraints

$$\left| \frac{\Delta Cap_{\max}(t,i)}{Cap(t,i)} = \frac{b_i \cdot \left(e^{-b_i(t-t_{0,i})} - 1\right)}{\left(1 + e^{-b_i(t-t_{0,i})}\right)} \right|$$

 $Q_{\infty,i}$: size of the reservoir (ultimate reserves, including past production)

 $p_i^{(0)}$: breakeven price (exploration/exploitation and accessibility)

 b_i : steepness of the bell-shape profile (default value: b=0.061)

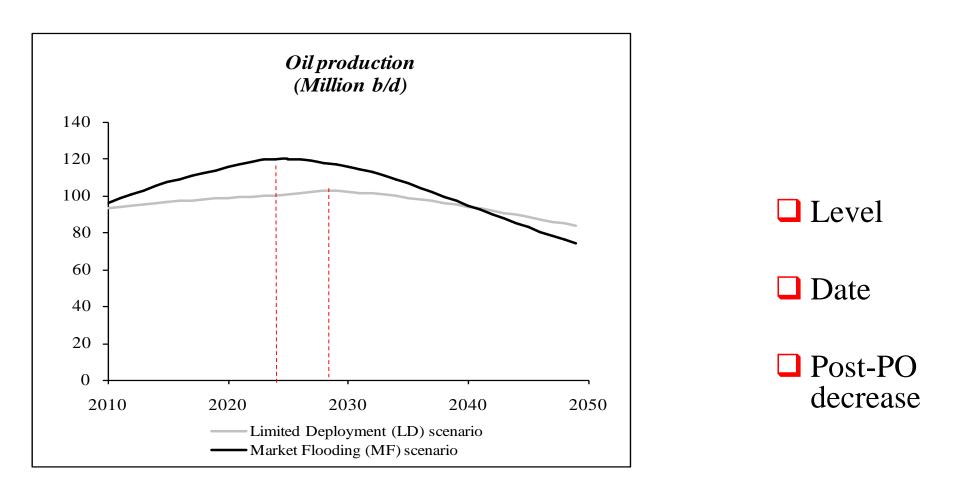
 $t_{0,i}$: expected date of the maximum for oil category i, given past production

Producers' behavior

- All regions except Middle-East = "Fatal producers"
 - ightharpoonup Maximum ΔCap_{max} if profitable $(p_{oil} > p_i^{(0)})$
- Middle-East = "Swing producers"
 - > Fill the gap between demand and other suppliers
 - ➤ World price depends on the utilization rate of production capacities
 - > Deployment of production capacities in function of their price objective

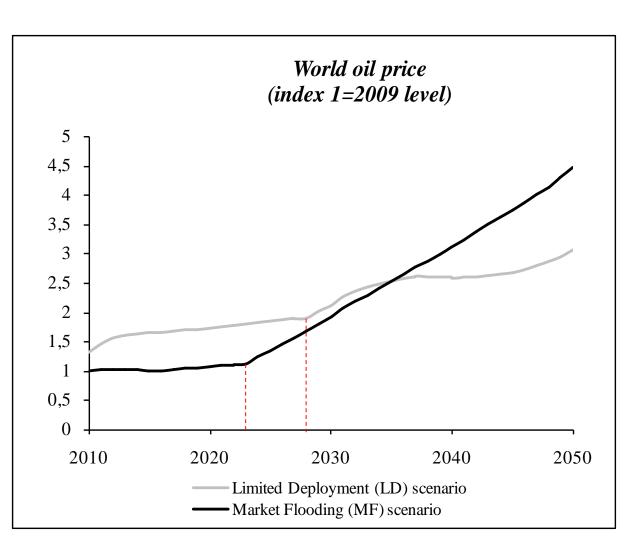
Endogenizing alternative liquids fuel & oil demand

- Alternatives to oil
 - Biofuels
 - Competition over oil-based fuels: supply curves increasing with oil price
 - Asymptotes on BF production at a given year (competition of land uses)
 - Evolve in time to represent induced technical progress
 - Coal-To-Liquid
 - backstop technology with capacity constraints
 - rice enter the market at high oil price
 - production costs governed by the cumulated past investments
- o Demand for liquid fuels (residential, industry, transport)
 - Utility and profit maximization under constraints
 - ➤ Short-term: inertia in the renewal of equipments and LBD
 - Long-term: consumption styles (preferences), technical potentials (technology availability, asymptotes), location patterns

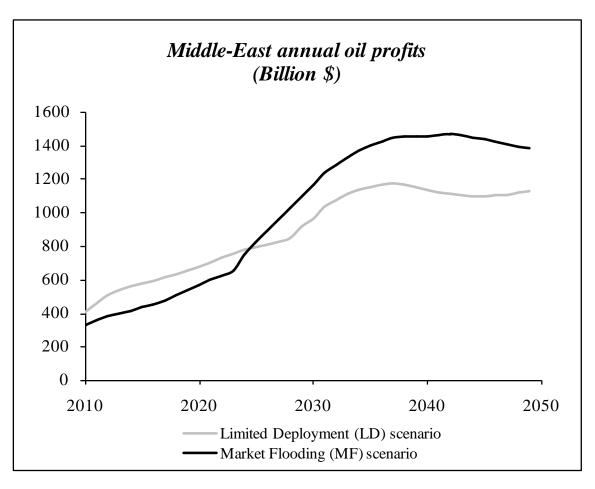

Modeling monopolistic behaviors

Two counterfactual scenarios of the world economy over 2010-2050

- different production capacity expansion in the short term
- Market Flooding scenario (1980 1986 strategy)
 - ➤ ME expands production capacities to maintain oil price at 2009 level
 - Supports high demand for oil in the short-term
 - ➤ Slows down low carbon technical change
- Limited Deployment scenario
 - ➤ ME restricts capacity expansion to maximize short-term rents
 - ➤ Induces a moderation of oil demand and a biased technical change towards non fossil energies


Moderate effect on the date of peak oil

Close dates but very different time profiles!


Stronger influence on long-term prices

- OPEC in the short-term
- ☐ Sudden rise at the Peak Oil date
- Continuous increase in long term due to constraints on CTL

Oil revenues as a short-term/long-term tradeoff

- Short-term revenues controlled by price targets
- Bubble of long-term profits triggered by price increase after PO

Room for Short-term vs. Long-term tradeoff!

The underlying economic and political rationale is then crucial

Discount rate	Limited Deployment Scenario	Market Flooding Scenario
0%	38.9	43.6
1%	28.9	31.8
2%	21.9	23.6
5%	10.6	10.8
6%	8.7	8.6
7%	7.2	7.0
15%	2.4	2.2

MF scenario profitable for oil producers at discount rates lower than 6%

Hedging strategy of short-term high prices against scarcity (for oil importers)

OECD average growth rate

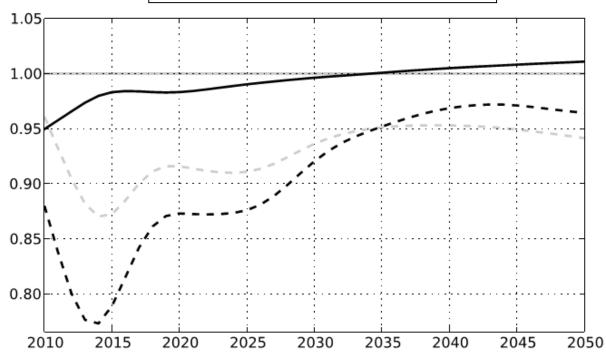
		Average (2010-2050)	Short-term Period (2010- 2025)	Peak Oil Period (2025- 2040)	Long-term Period (2040- 2050)
Natural growth rates		1.42%	1.69%	1.30%	1.19%
Effective growth rates	Limited Deployment scenario	1.57%	1.93%	1.43%	1.24%
	Market Flooding scenario	1.53%	2.00%	1.29%	1.18%

Close average growth but different time profiles: good indicator of tensions, when effective growth rates are below the natural one

Light tight oil as a game changer?

Are current low prices such a surprise?

- Shocks in production :
 - + 4 mb/d from U.S. Light tight oil since 2009
 - + 0.7 mb/d from Libya between June and October 2014
- Normal cyclical price of the oil commodity
 - Long period of high price :
 - Fuelling growth in supply
 - Discriminate demand growth not meeting supply


 (efficiency in transport, substitutions, lower economic activity)

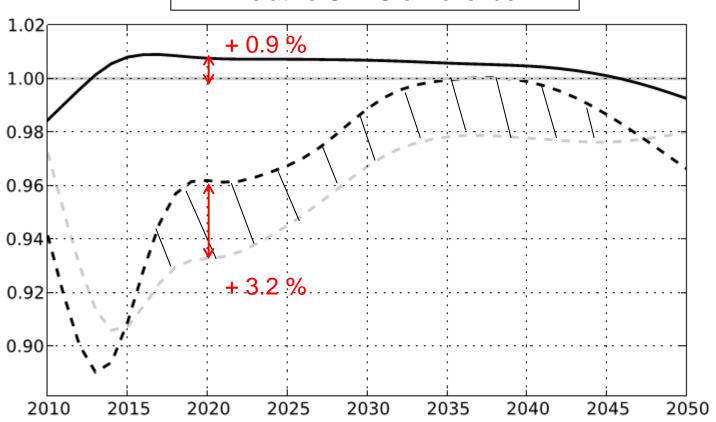
Sources: Khalid Al-Falih, chief executive of Saudi Aramco World Economic Forum on 21 January 2015 (from Oil price war, John Kemp – Reuters – 5th February 2015)

Shifting oil prices downwards

-- US : Tight oil - MDE : Limited development

-- US : Tight oil - MDE : Market flooding

US : no tight oil - MDE : Limited development


US : no tight oil - MDE : Market flooding

Larger differences between strategy in oil revenue

US: Tight oil - MDE: Limited development

US: Tight oil - MDE: Market flooding

US : no tight oil - MDE : Limited development

US : no tight oil - MDE : Market flooding

Projection is not prediction

- Energy prospective models are not expected to:
 - Give best guess of future energy and economic values
 - ➤ Predict future geopolitical and energy context
 - Light tight oil boom in US
 - ➤ Conflicts in Middle East
- The « good use » of 'hybrid' energy prospective model :
 - Confront contrasted views of the future under uncertainty :
 - ➤ Geological uncertainties
 - ➤ Potential behavior of Middle East
 - Understand the Short-term / Long-term interplay :
 - Economical part of geopolitical context for producers
 - Short-term low price may impact long-term growth of oil importing countries
 - ➤ Use and enhancement of prospective models when information is given :
 - Reasons for the Middle East response to US light tight oil production

Thank you for your attention!

Florian LEBLANC

<u>leblanc@centre-cired.fr</u>