
Efficacité énergétique pour les smart grids grâce à l'optimisation et à la prédiction

Peter Pflaum

Confidential Property of Schneider Electric

The emergence of smart grids

Energy management context

Energy vs. Power Management:

	Power Management	Energy Management
Scope	Stability	Energy efficiency
Time scale	ms ~ s	mins ~ hours

Energy management objectives:

- Minimize energy costs
- Reduce CO₂ emissions
- Mitigate power outages
- Improve the Quality of Service

Model Predictive Control

Principle & Ingredients

At each decision instant: Anticipate the future to find the optimal control.

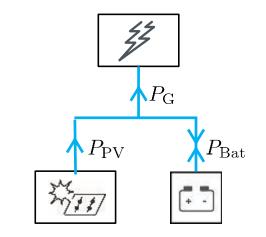
Life Is On

Two energy management examples

• PV farm with storage

\rightarrow Flexibility for grid support

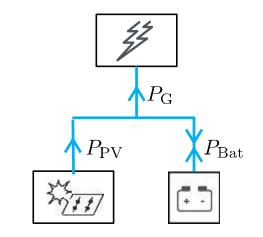
• Learning Grid by Grenoble

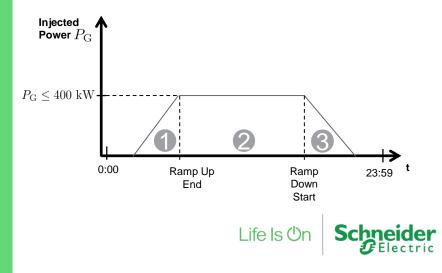


\rightarrow Flexibility for energy self-consumption

• Example 1: Langa Solar, Corsica

• PV plant revenue maximization under regulatory constraints





• Example 1: Langa Solar, Corsica

- PV plant revenue maximization under regulatory constraints
- Context
 - Declare day-ahead injection profile $P_{\rm G}$
 - Respect trapezoidal profile shape
 - Penalty if realized $P_{\rm G} \neq$ declared $P_{\rm G}$

- Example 1: Langa S
- Control problem form

$$P_{PV} \qquad P_{Bat}$$

$$P_{PV} \qquad P_{Bat}$$

$$P_{PV} \qquad P_{Bat}$$

$$P_{PV} \qquad P_{Bat}$$

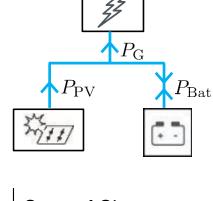
$$P_{PV} \qquad P_{Pot}$$

$$P_{Pot} \qquad P_{Pot} \qquad P_{Pot} \qquad P_{Pot}$$

$$P_{Pot} \qquad P_{Pot} \qquad$$

0:00

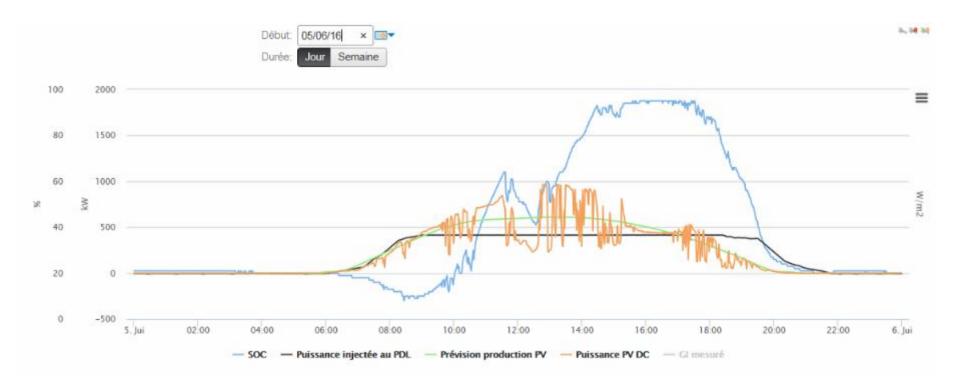
Ramp Up


End

Life Is Or

Ramp

Down Start


Several logical constraints to distinguish between the three phases.

 $\underset{P_{\rm G}, P_{\rm Bat}, SoC}{\text{Maximize}} \int_{t=0}^{24} P_{\rm G}(t)$

s.t. $P_{\rm G}(t) = P_{\rm PV}(t) -$

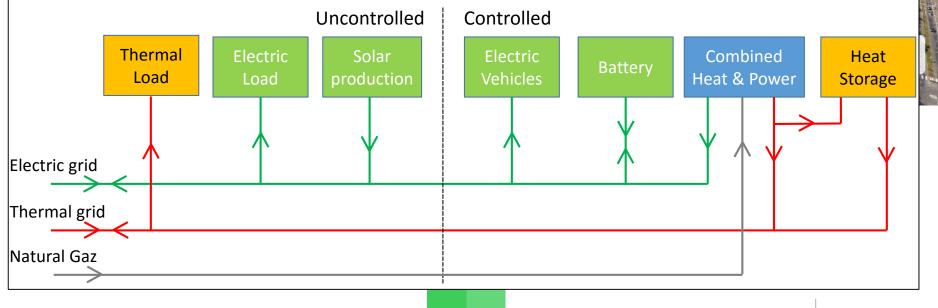
Screenshot from the Langa Solar monitoring system

Life Is On

Confidential Property of Schneider Electric | Page 10

- Ex. 2: Learning Grid by Grenoble
- Multi-energy campus
 - Electricity- and District heating network
 - Batteries
 - Solar panels
 - CHP (Combined heat and power plant)
 - EV charging station

- Use flexibilities for local purposes
 - Maximize local usage of renewables
 - Minimize energy costs
 (based on variable energy tariffs)



• Ex. 2: Learning Grid by Grenoble

Schneider

Life Is On

• Model Predictive Control is a powerful method for energy management applications

• **Reliable forecasts** are a crucial prerequisite to obtain good performances

Conclusion

 $P_{\rm G}$

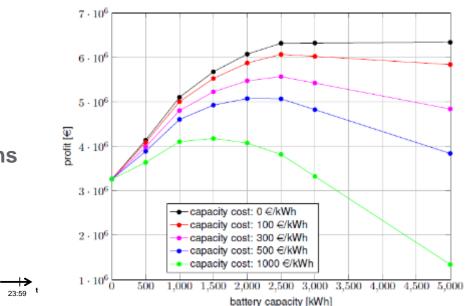
 $P_{\rm Bat}$

. .

Challenges:

 $P_{\rm PV}$

• Optimal sizing of smart grid components must integrate advanced control solutions


> Injected Power Pc

 $P_{\rm G} \le 400 \text{ kW}$

0:00

Ramp Up

End

Life Is Or

 In multi-owner use cases, the economic model for flexibility will have a strong impact on the control/optimization model

Ramp

Down Start

Thank you!

