

A long-term analysis of access to electricity in Africa in a climate context

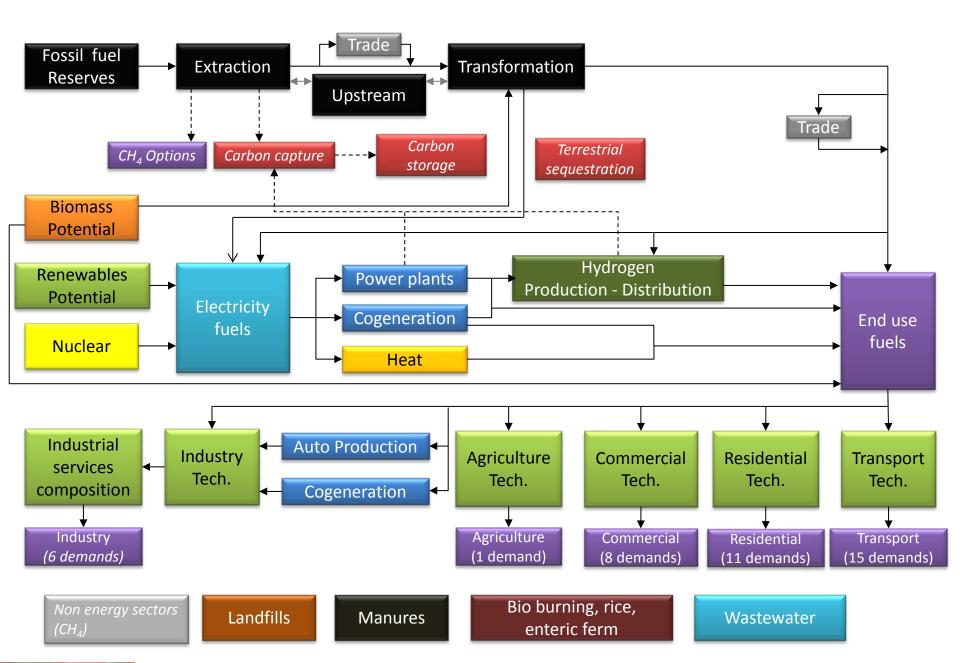
Sandrine SELOSSE MINES ParisTech/Center for Applied Mathematics ParisTech Chair Modeling for Sustainable Development

November 12, 2013

COP 19 – Warsaw – European Pavilion

Overview

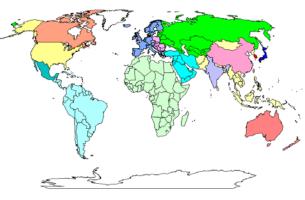
- Long term prospective studies with TIMES model
- Context of Climate issues
 - COP 15 commitments to 2020
 - UNFCCC target to 2050
- Regional focus
 - African electricity system
 - Access to electricity


Long-term prospective with TIMES model

Tools: TIAM-FR

- TIMES Integrated Assessment Model
 - ETSAP (Energy Technology Systems Analysis Program) from IEA
- Based on the concept of Reference Energy System
 - Detailed description of existing and future technologies
 - From extraction to energy services demands
- Bottom-up optimization model
 - Minimization of the total discounted cost of the system

World energy system


Tools: TIAM-FR

- TIMES Integrated Assessment Model
 - ETSAP (Energy Technology Systems Analysis Program) from IEA
- Based on the concept of Reference Energy System
 - Detailed description of existing and future technologies
 - From extraction to energy services demands
- Bottom-up optimization model
 - Minimization of the total discounted cost of the system

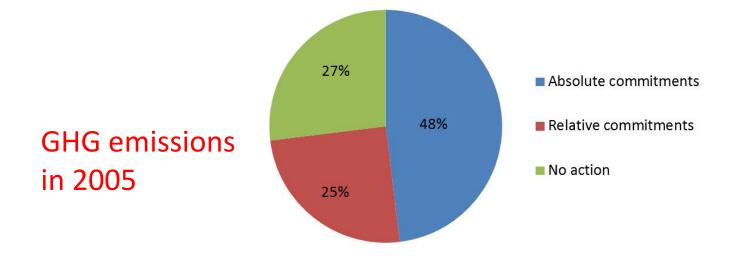
Characteristics of TIAM-FR

World integrated model in 15 regions

	AFR	Africa	JPN	Japan
	AUS	Australia and New Zealand	MEX	Mexico
	CAN	Canada	MEA	Middle-East
• .	CHI	China	ODA	Other Developing Asia
	CSA	Central and South America	SKO	South Korea
	EEU	Eastern Europe	USA	United States of America
	FSU	Former Soviet Union	WEU	Western Europe
	IND	India		

- Time horizon: 2005-2050
- GHG emissions and climate module
 - CO_2 , CH_4 and N_2O
 - Atmospheric concentration, temperature change and radiative forcing

Climate scenarios analysis: GHG reduction cases


Political ambitions by 2020

- 5 groups of countries
 - Absolute commitments
 - Relative commitments
 - Political actions and support to a global agreement
 - Support without action (61 countries, essentially least advanced)
 - No association or no communication (51 countries, a majority of oil-producing countries)

Scenarios of emissions reduction by 2020

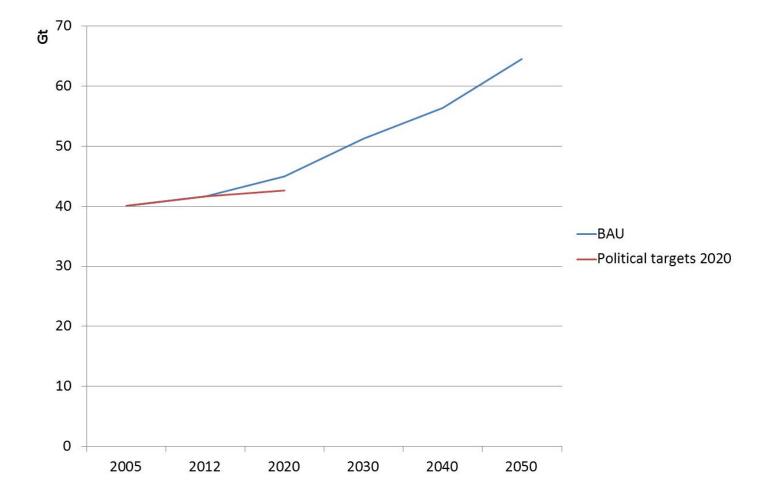
- 3 groups of countries
 - Absolute commitments:
 AUS, CAN, JPN, EEU-WEU, FSU, USA
 - Relative commitments: CHI, IND, MEX, SKO
 - No constraint: AFR, CSA, MEA, ODA

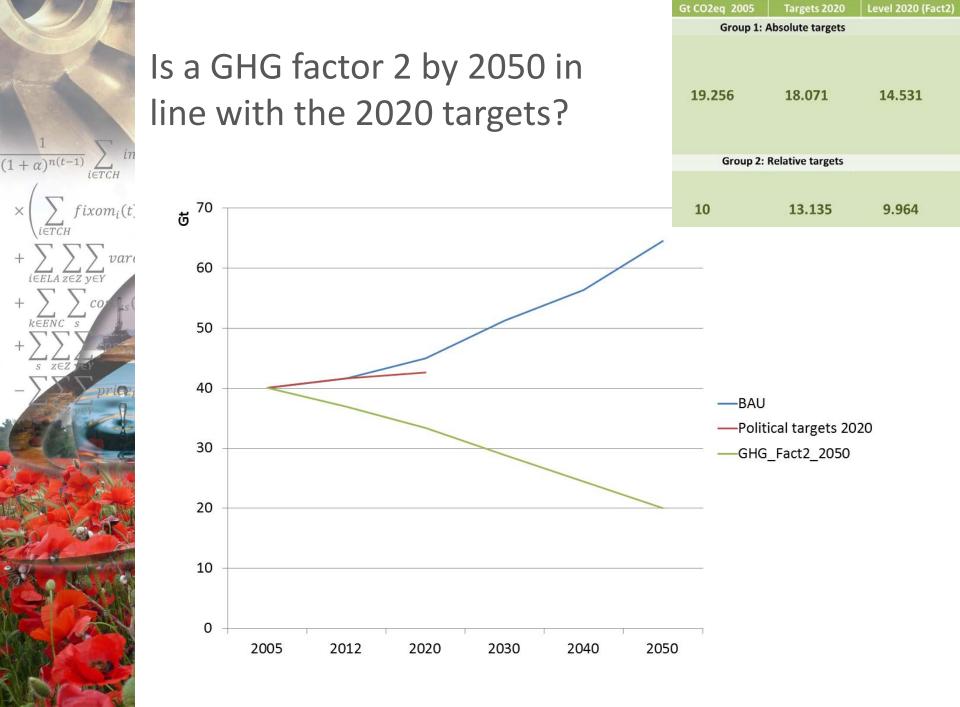
Regional scenario of GHG emission reduction: low targets by 2020

Region	Reduction by 2020	Reference year	Target					
Group 1: Absolute targets								
AUS	5%	2000						
CAN	17%	2005						
JPN	25%	1990	Absolute target					
FSU	15%	1990						
USA	17%	2005						
WEU+EEU	20%	1990						
	Group 2: R	elative targets						
CHI	40%	GDP 2020	Carbon intensity					
IND	20%	GDP 2020	Carbon intensity					
MEX	30%	2020	BAU					
SKO	30%	2020	BAU					

Regional scenario of GHG emission reduction: low targets by 2020

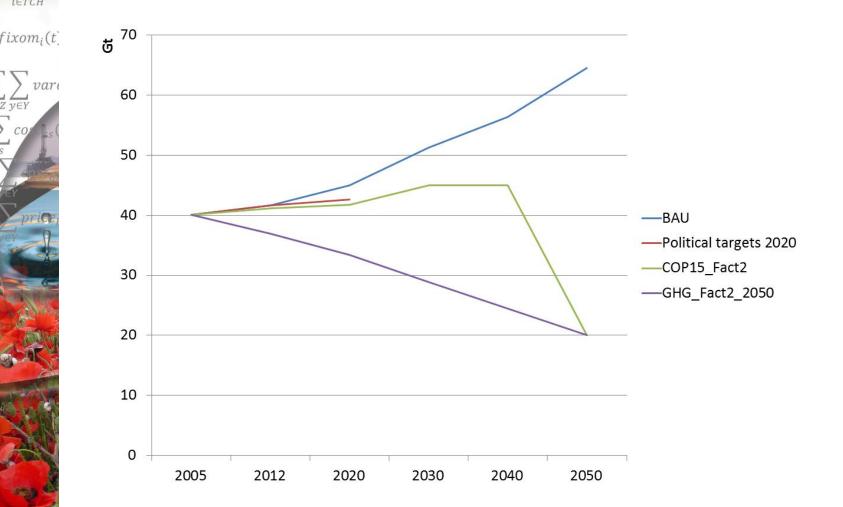
Region	Gt CO2eq 2005	Gt CO2eq 2020	Evol 2005-2020					
Group 1: Absolute targets								
AUS	0.742	0.657	-11.4%					
CAN	1.142	0.947	-17%					
JPN	1.345	0.945	-29.71%					
FSU	3.305	4.762	+44%					
USA	7.072	5.869	-17%					
WEU+EEU	5.65	4.891	-13.42%					
	Group 2: F	Relative targets						
CHI	6.917	8.965	+29.6%					
IND	1.926	3.320	+72.32%					
MEX	0.606	0.423	-30.15%					
SKO	0.556	0.427	-23.55%					




Regional scenario of GHG emission reduction: low targets by 2020

Region	Gt CO2eq 2005	Gt CO2eq 2020	Evol 2005-2020								
	Group 1: Absolute targets										
	19.256	18.071	-6.15%								
	Group 2: I	Relative targets									
	10	13.135	+31.28%								

World GHG emissions



Is a GHG factor 2 by 2050 in line with the 2020 targets?

 $(1+\alpha)^{n(t-1)}$

i∈TCH

Is a GHG factor 2 in 2050 reachable without the participation of developing countries?

- 3 Groups
 - Absolute, Relative and No Action
- Factor 2 with fix level of GHG emissions from 2005 to 2050 for No action and with fix objectives for Absolute and Relative by 2020
- It is not possible to reach the target
 - The contribution of developing countries is a necessary condition to reach an ambitious climate objective

Regional focus: Impact on the African system

African energy context

- More than 60% of the African population has not access to commercial energy and use firewood
- So, the expected growth of the population and development in Africa will lead to increased energy needs
- The natural resources are important
 - Fossil fuels or renewables potential
 - Renewables, largely untapped, should be promote

But significantly different from one region to another

Different economic and energy realities within Africa

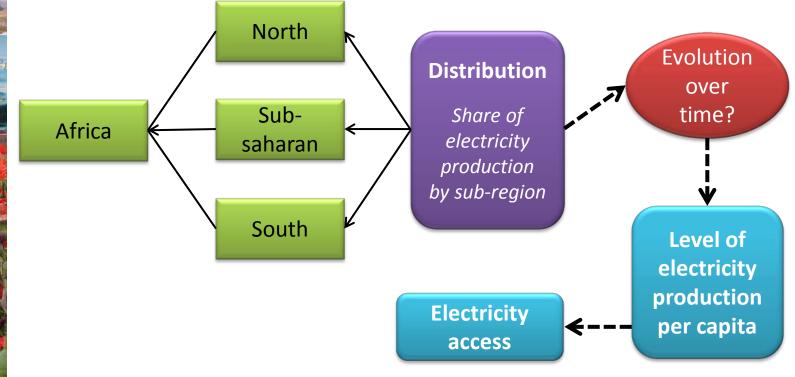
- North Africa and South Africa: 75% of the energy consumed
 - Sub-Saharan Africa: ¾ of the population

Heuraux 2010	Population (millions; 2009)	GDP per capita (US \$)	Conso. Elec per capita (kWh)	Conso. Elec (GWh)
AFRICA	1 030	1 380	474	446 150
North	169	2 665	1 039	138 325
Sub-Saharan	810	525	136	105 825
South	50	5 720	4 008	202 000

> Energy resources and potential: unequally distributed

- North Africa: abundant oil and gas and CSP potential
- Sub-saharan Africa: hydro potential
- South Africa: coal

Hoursey 2010	Heurgux 2010		cities (GW) Potential and reserves			
Heuruux 2010	TOTAL	Hydro	Hydro (GW)	Gas (Gm3)	Coal (Mt)	Oil (Mbl)
AFRICA	114	24	201,3	14 893	55 519	125 000
North	43	5	7,2	8 079	73	60 900
Sub-Saharan	30	17	192,6	6 795	1 446	64 100
South	41	2	1,5	19	54 000	-


Modelling context: modification in TIAM-FR

- Implementation of 3 power sub-sectors in Africa
 - North Africa AFR1
 - Sub-Saharan Africa AFR2
 - South Africa
 AFR3
- Calibration of the electricity sector
 - Base year source: IEA Statistics, 2011 Edition, Energy statistics of non-OECD countries
 - Time horizon: Potential of resources by sub-sector
 - Time horizon: Scenarios of sub-regional distribution of African electricity on the time period: electricity production per capita

Contrasted levels of evolution of the electricity access

 Sub regional distribution on the time horizon is based on the level of electricity production per capita
 Electricity access

Same speed access to electricity

$\frac{1}{(1+\alpha)^{n(t-1)}} \sum_{i \in TCH} in$	2005	Production per capita (kWh/capita)	Distribution of the electricity production by sub-region (%)		
$\times \left(\sum_{i \in TCH} fixom_i(t) \right)$	North Africa	1,231	36%		
$+\sum_{i\in ELA}\sum_{z\in Z}\sum_{v\in Y}vart$	Sub-saharan Africa	164	21%		
$+\sum_{i}\sum_{j}\cos(i)$	South Africa	4,930	43%		Z
$+\sum_{k\in ENC}s$	AFRICA	601	100%	Region	Speed
$-\sum_{n=1}^{s}\sum_{i=1}^{z\in Z}\sum_{i=1}^{i\in Y}$				AFR1	1
				AFR2	1
	2050	Production per capita (kWh/capita)	Distribution of the electricity production by sub-region (%)	AFR3	1
	North Africa	1,805	36%		
	Sub-saharan Africa	241	32%		
	South Africa	7,229	32%		
	AFRICA	639	100%		

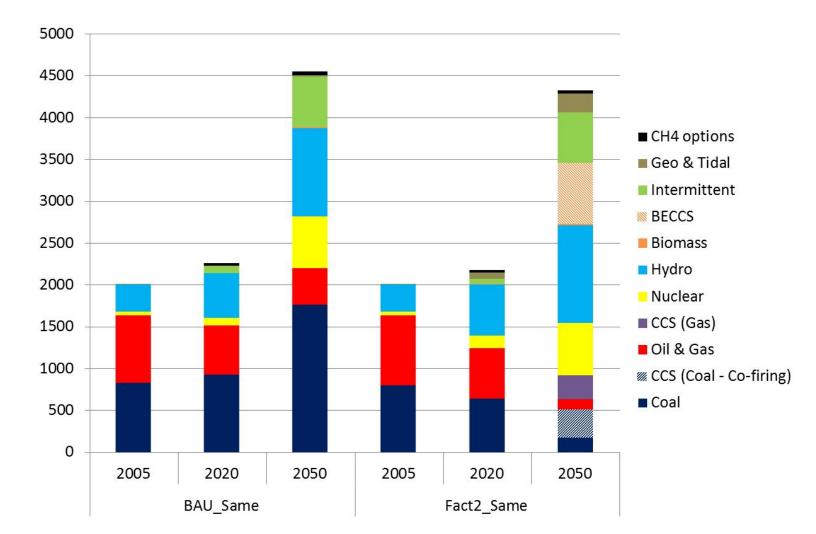
46.7%

46.7%

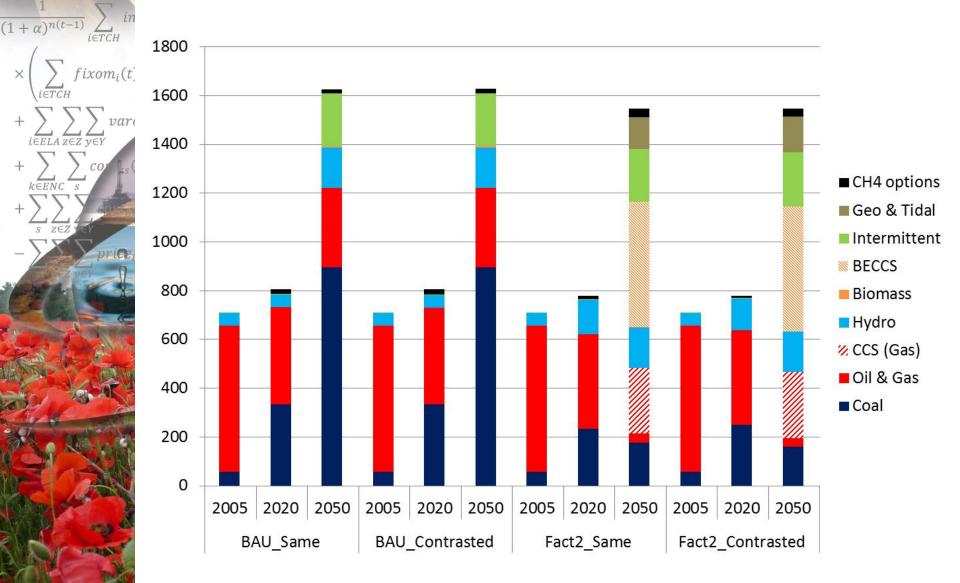
46.7%

Contrasted speed access to electricity

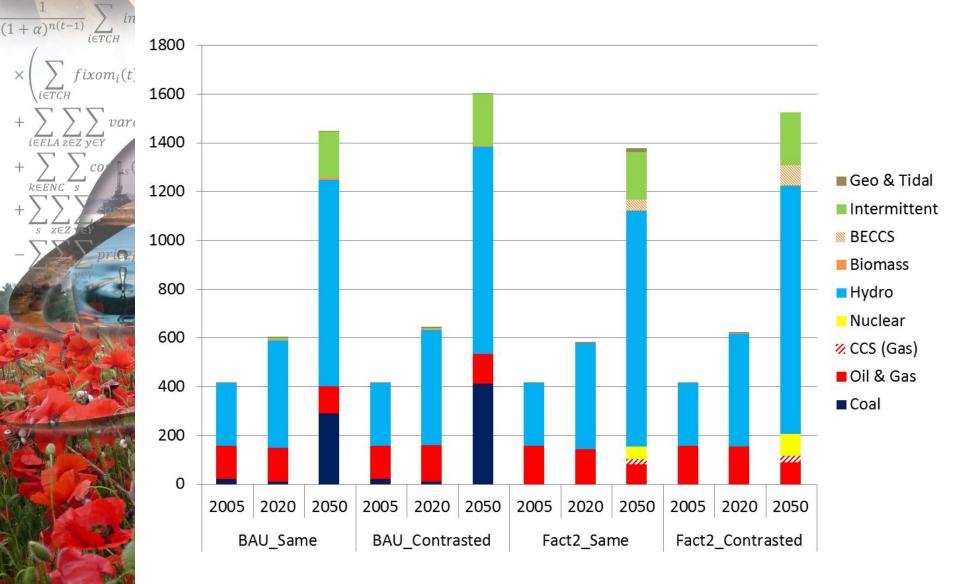
46.7%

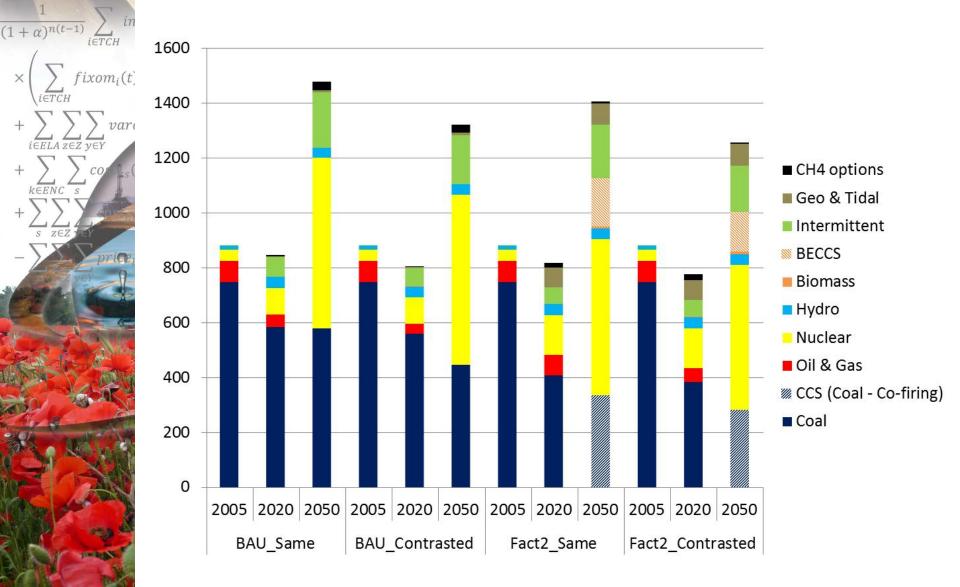

62.3%

31.2%


$\frac{1}{(1+\alpha)^{n(t-1)}} \sum_{i \in TCH} in$	2005	Production per capita (kWh/capita)	Distribution of the electricity production by sub-region (%)		
$\times \left(\sum_{i \in TCH} fixom_i(t) \right)$	North Africa	1,231	36%		
$+\sum_{i\in ELA}\sum_{z\in Z}\sum_{v\in Y}vari$	Sub-saharan Africa	164	21%		
$+\sum_{z}\sum_{z}\cos \frac{1}{z}s(z)$	South Africa	4,930	43%		4
$+\sum_{k\in ENC}s$	AFRICA	601	100%	Region	Speed
$-\sum_{i=1}^{s}\sum_{j\in Y} priGr$				AFR1	0.75
				AFR2	1
	2050	Production per	Distribution of the electricity	AFR3	0.5
	2050	capita (kWh/capita)	production by sub-region (%)		/
	North Africa	capita (kWh/capita) 1,806	production by sub-region (%) 36%		
	North Africa	1,806	36%		
	North Africa Sub-saharan Africa	1,806 266	36% 35%		

$\overline{(1+\alpha)^{n(t-1)}}$ fixom_i(t) var


Electricity production (PJ) – Africa BAU & Climate scenarios


Electricity production (PJ) – North Africa BAU & Climate scenarios

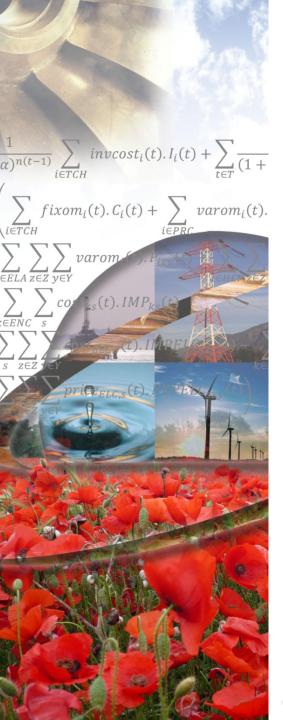
Electricity production (PJ) – Sub-saharan BAU & Climate scenarios

Electricity production (PJ) – South Africa BAU & Climate scenarios

Intelligent and fair solutions to GHG emissions reductions?

- Den Elzen and Höhne (2008): a reduction between 15% and 30% by 2020 by comparison with BAU...
 - BAU₂₀₂₀: 3 Gt-CO2_{eq}

 $\frac{1}{(1+\alpha)^{n(t-1)}}\sum_{i\in TCH}in$


fixom_i(t)

vare

- Fact2₂₀₂₀: 1.79 Gt-CO2_{eq}

- Economical rationality
 - Priority of development
 - Access to energy: need fo electricification (in a massive and accelerated way)
 - Electricity costs
- Technological choices
 - Potential of renewables : solar without funded projects?
 - Large scale development of CCS? Of BECCS?
 Food competition with biomass, deforestation
 - Smart solutions to reduce losses in distribution, peak demand, etc.

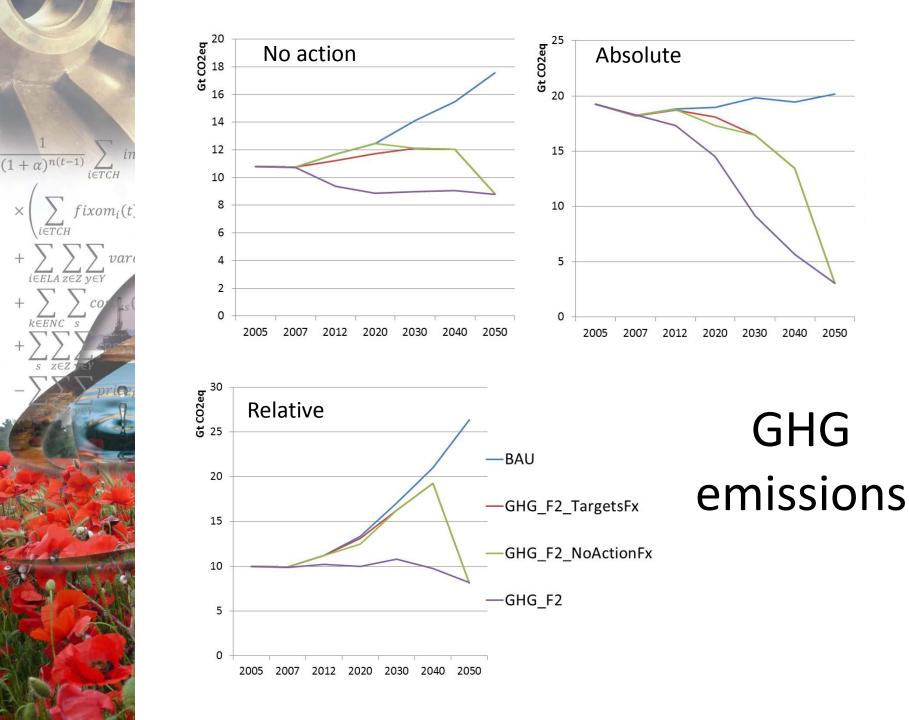
Thank You!

November 12, 2013

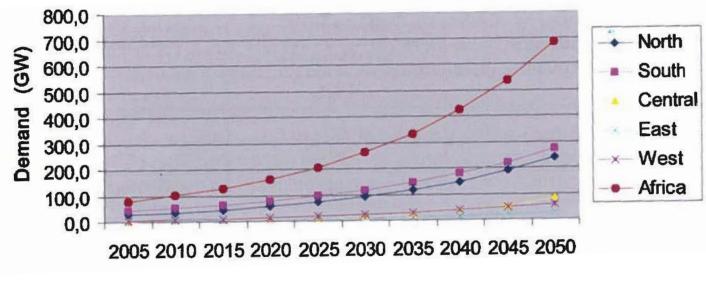
COP 19 – Warsaw – European Pavilion

Is a GHG factor 2 by 2050 in line with the 2020 targets?

Region	Gt CO2eq 2005	Targets 2020	Level 2020 (Fact2)							
Group 1: Absolute targets										
	19.256	18.071	14.531							
	Group 2:	Relative targets								
	10	13.135	9.964							

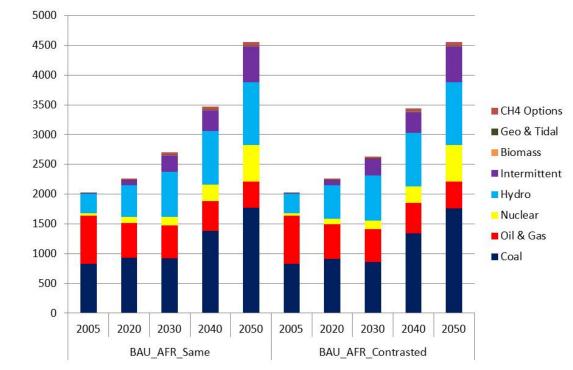

Is a GHG factor 2 in 2050 compatible with the 2020 targets?

Region	Gt CO2eq 2005	Targets 2020	Level 2020 (Fact2)						
Group 1: Absolute targets									
AUS	0.742	0.657	0.371						
CAN	1.142	0.947	0.651						
JPN	1.345	0.945	1.051						
FSU	3.305	4.762	2.80						
USA	7.072	5.869	5.515						
WEU+EEU	5.65	4.891	4.143						
	Group 2:	Relative targets							
CHI	6.917	8.965	7.062						
IND	1.926	3.320	1.987						
MEX	0.606	0.423	0.415						
SKO	0.556	0.427	0.500						


Comparative analysis (1)

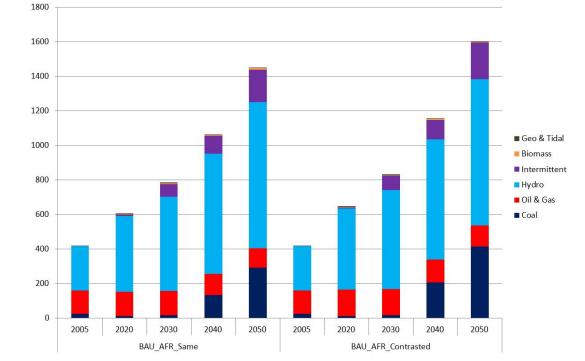
- 3 Groups
 - Absolute, Relative and No Constraint
- Different objectives
 - Factor 2: world GHG emissions divided by 2 in 2050 (GHG_F2)
 - Factor 2 with fix level of GHG emissions from 2005 to 2020 for No constraint (GHG_F2_NoActionFx)
 - Factor 2 with fix objectives for Absolute and Relative (GHG_F2_TargetsFx)

Important expected increase of the electricity consumption : North and South Africa

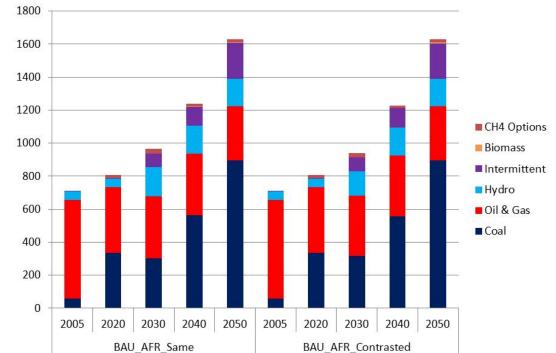


Source: WEC, 2007 according 2004 data

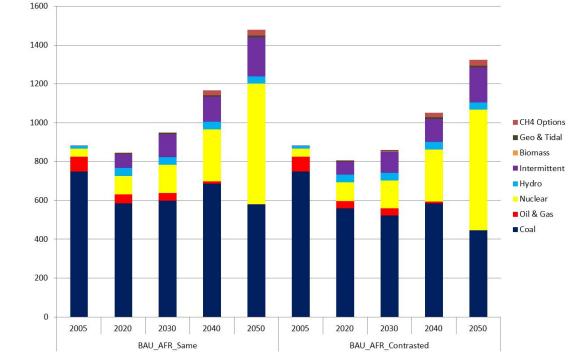
• Different impacts on the electricity mix according to sub-regions


Electricity production (PJ) - AFRICA

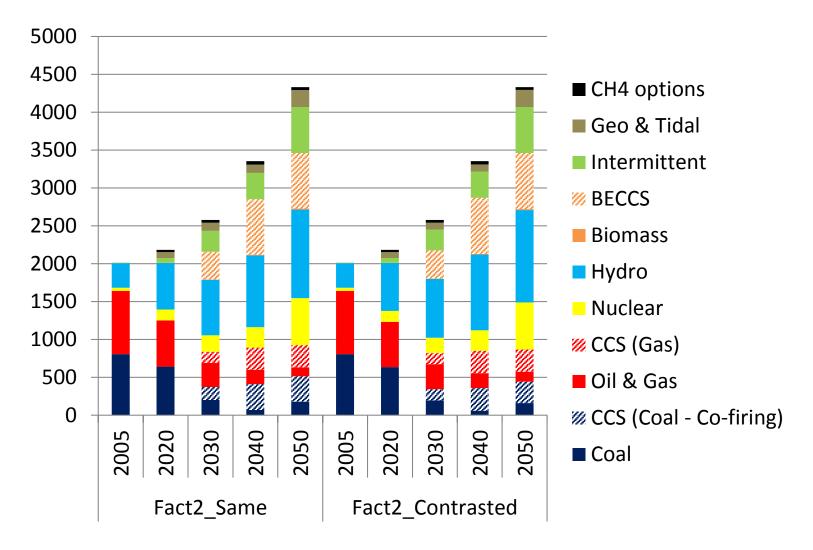
Share (%)	Period	Coal	Oil & Gas	Nuclear	Hydro	Intermittent
	2005	41	40	2	16	0
	2020	41	26	4	24	4
BAU_AFR_Same	2030	34	21	5	28	10
	2040	40	15	8	26	10
	2050	39	10	14	23	13
	2005	41	40	2	16	0
	2020	40	26	4	25	3
BAU_AFR_Contrasted	2030	32	21	5	29	10
	2040	39	15	8	26	10
	2050	39	10	14	23	13

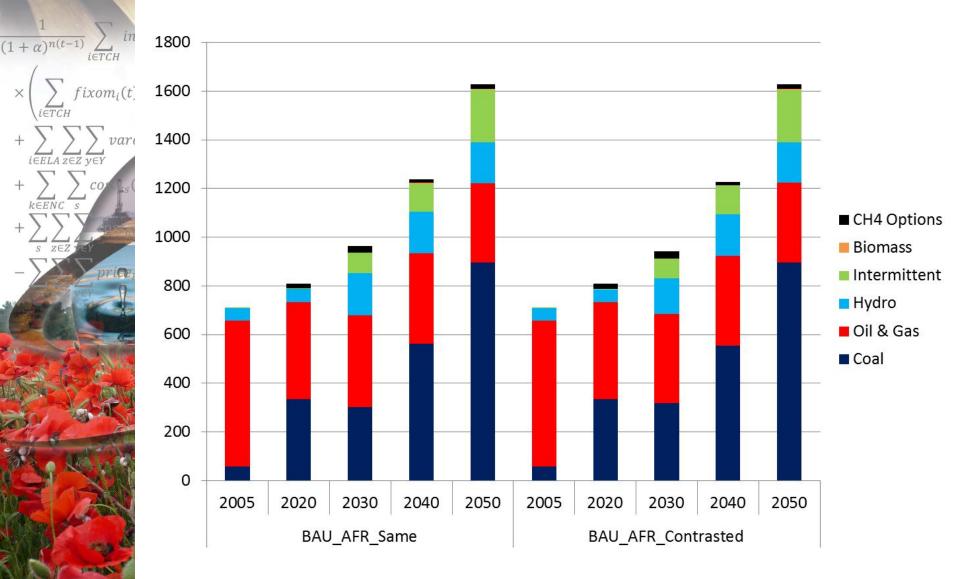

Electricity production (PJ) – North Africa

Scenario	Period	Coal	Oil & Gas	Hydro	Intermittent
	2005	8	84	7	0
	2020	42	49	6	0
BAU_AFR_Same	2030	31	39	18	9
	2040	45	30	14	9
	2050	55	20	10	13
	2005	8	84	7	0
	2020	41	49	6	0
BAU_AFR_Contrasted	2030	34	39	16	9
	2040	45	30	14	10
	2050	55	20	10	13

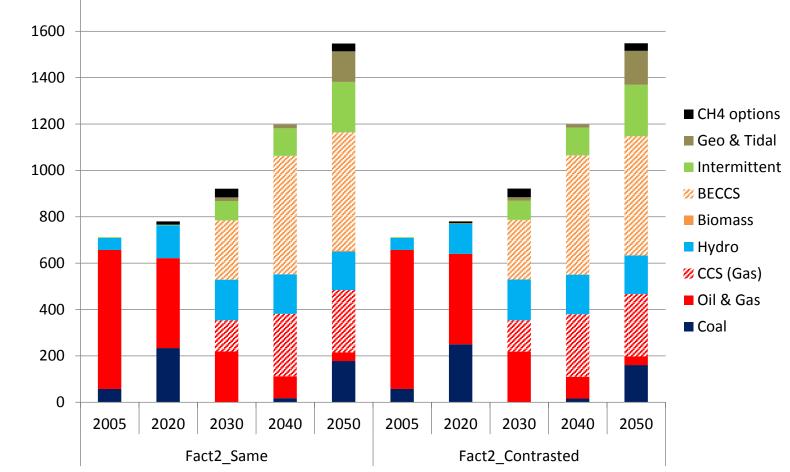

Electricity production (PJ) – Sub-saharan Africa

Scenario	Period	Coal	Oil & Gas	Hydro	Intermittent
BAU_AFR_Same	2005	6	32	61	0
	2020	2	23	72	1
	2030	2	18	70	9
	2040	13	12	66	10
	2050	20	8	58	13
BAU_AFR_Contrasted	2005	6	32	61	0
	2020	2	23	73	1
	2030	2	18	69	10
	2040	18	12	60	10
	2050	26	8	53	13

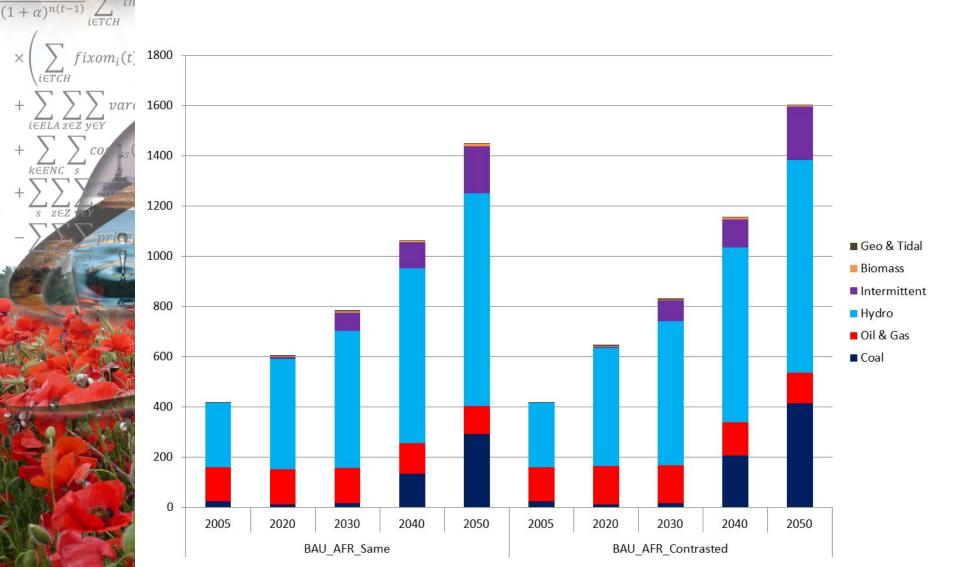

Electricity production (PJ) – South Africa


Scenario	Period	Coal	Oil & Gas	Nuclear	Hydro	Intermittent
BAU_AFR_Same	2005	85	9	5	2	0
	2020	69	5	11	5	8
	2030	63	4	15	4	12
	2040	59	1	23	3	11
	2050	39	0	42	3	14
BAU_AFR_Contrasted	2005	85	9	5	2	0
	2020	70	5	12	5	8
	2030	61	4	17	5	13
	2040	56	1	26	4	11
	2050	34	0	47	3	14

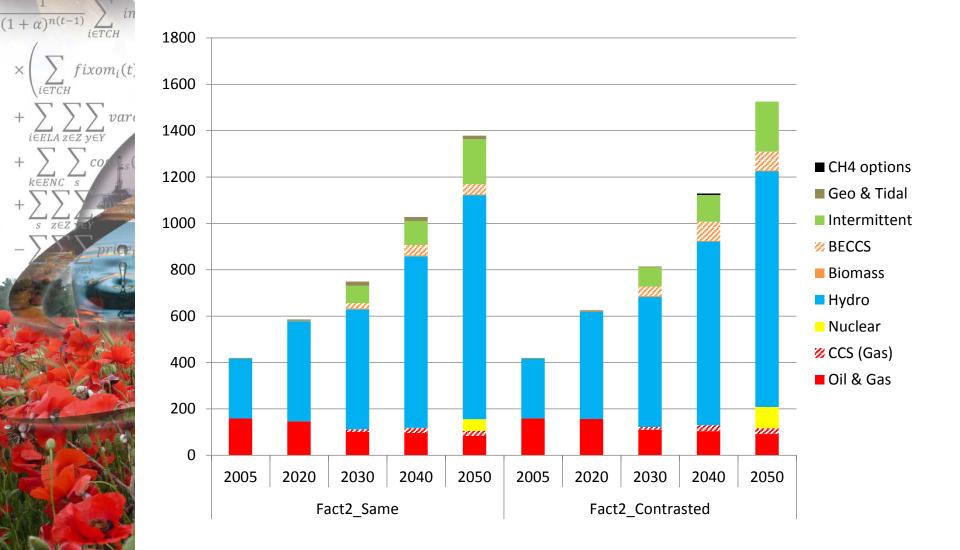
Electricity production (PJ) – AFRICA *Climate constraint scenario*

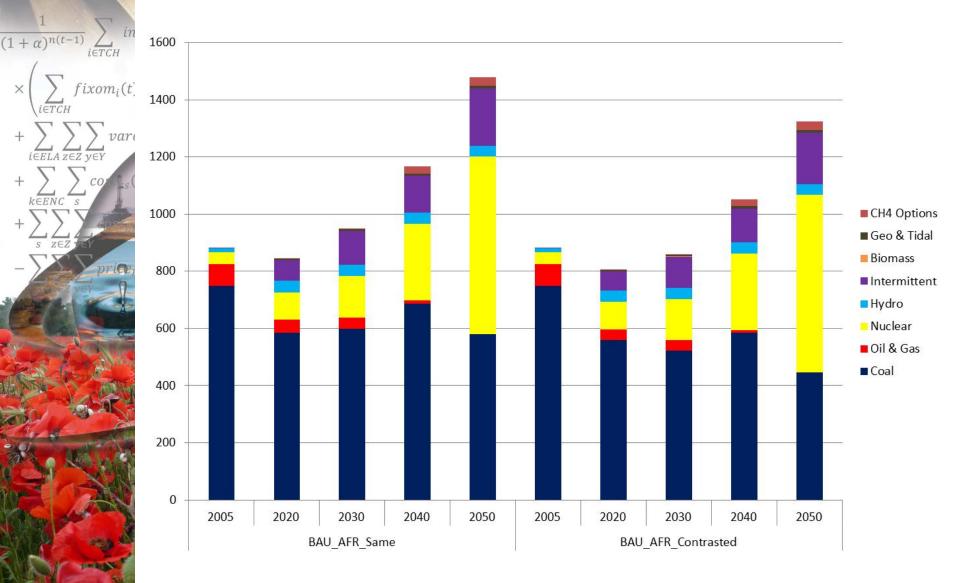


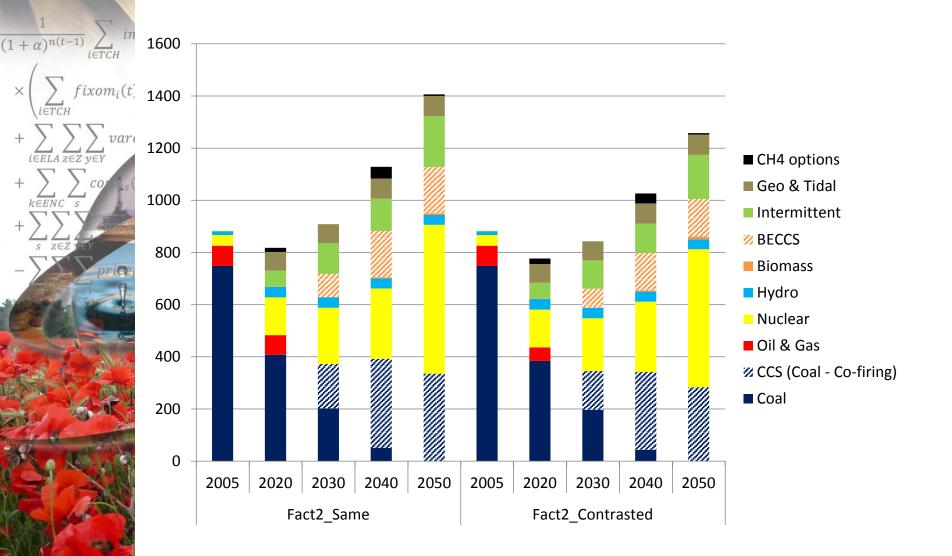
Electricity production (PJ) North Africa



Electricity production (PJ) – North Africa Climate constraint scenario


vare


Electricity production (PJ) Sub-Saharan Africa


Electricity production (PJ) – Sub-saharan Climate constraint scenario

Electricity production (PJ) South Africa

Electricity production (PJ) – South Africa Climate constraint scenario

