

Centre International de Recherche sur l'Environnement et le Développement

Chaire Modélisation prospective au service du développement durable

Phasing out the nuclear energy in France? A heuristic exercise around an unlikely perspective

Jean-Charles Hourcade, Ruben Bibas, Christophe Cassen

Side-Event Combating nuclear with or without nuclear Warsaw COP19 - 12 november 2013

Chaire Modélisation prospective au service du développement durable ParisTech INSTITUT DES SCIENCES ET TECHNOLOGIES PARIS INSTITUTE OF TECHNOLOGY

The aim of a heuristic exercise

• To put some rationale in strong divisive lines in France and beyond

• To make explicit the systemic effects between energy and non energy policies

To derive more general lessons about what "energy transition means"

A recursive and modular architecture:

static equilibria + dynamic relations informed by engineering based information

Risk vs Risk; Nuke vs Global Warming

Encilowcarb project scenarios (EUFP7) : optimistic views on consensual P&M (policies and measures)

Energy efficiency regulations

Financial incentives for upgraded air conditionning

Eco-taxes on trucks and on kerosene

P&M: missed F4, reduced nuclear as a co-product

P&M: Missed F4 and a real transition problem

Time	2010-	2010-	2020-	2030-	2040-	2010-
Period	2015	2020	2030	2040	2050	2050
Ref	0.77%	0.83%	1.09%	1.47%	0.85%	1.06%
P&M	0.73%	0.9%	1.32%	1.46%	0.9%	1.15%

GDP annual growth rate

	2015	2020	2030	2040	2050
ΡΜ	-2	26	183	254	307

Employment variation in thousands of 'full time' jobs

- The macroeconomic impact of adjustment costs
- Time-lag expenditures <-> benefits
- More significant costs at a disagregated level

Soial negotiations

Low carbon growth with still 50% of nuclear

Period	2010-2015	2010-2020	2020-2030	2010-2050
Baselin	0.77%	0.83%	1.09%	1.06%
PM	0,73%	0,9%	1,32%	1,15%
Full Policy Package	0.87%	1.00%	1.46%	1.23%

Average GDP growth rate

- F4 objective met with 'slightly' higher growth and employment
- Success conditional upon the political, social and technical capacity to enforce a diverse set of measures, including the Encilowcarb Energy Efficiency objectives
- Nuclear installed capacity passes from 65 GW in the reference case to 53 GW

Adding on three ways of internalizing nuclear risks after Fukushima

- N1: security investments -> doubling the capital cost
- N2: shortening the extension of nuclear plants (50 years instead of 60 years)
- N3: phasing out nuclear around 2050
- All this under the same F4 constraint

Implications of the Nuclear phasing out in 2050?

	Emissions / 1990	GDP annual GR	Nuclear Capacity	Share of Nuke in Elec	CCS capacity	CCS as a share of Elec Capacity
Full Policy Package (FPP)	17%	1,23%	53 GW	49%	2 GW	1%
FPP + N1	18%	1,21%	38 GW	43%	10 GW	5%
FPP+ N2	18%	1,22%	39 GW	43%	16 GW	6%
FPP+ N3	25%	1,1%	2 GW	2%	37 GW	37%

Phasing out nuclear: real cost, no "de-growth" ... but

Time	2010-	2010-	2020-	2030-	2040-	2010-
Period	2015	2020	2030	2040	2050	2050
Baseline	0.77%	0.83%	1.09%	1.47%	0.85%	1.06%
F4 : F.P.M	0.87%	1.00%	1.46%	1.50%	0.97%	1.23%
F4 + N3	0.83%	0.98%	1.43%	1.18%	0.83%	1.10%

GDP annual growth rate

- Phasing out nuke under F4 constraint entails a marginal real cost over the short term and a four years delay compared with F4
- Is this marginal cost acceptable is a matter of value judgment
- But the both the F4 objective and the phasing out seem achievable with a one year and a half gain in GDP around 2050

Misuses and gooduses of a numerical experiment

- To form a judgment about the realism of the phasing out scenario ... look carefully at the list of preconditions
 - Technological assumptions
 - Assumptions about the capacity of conducting deep institutional changes
 - Assumptions about the incorporation of energy policies into broader macroeconomic and social policies

• General lessons for climate policies

- Macroeconomic policies matter
- The link between energy policies and overall development policies matter
- Caveat about the gap between consistent scenarios and the enforceable policies underlying these scenarios

For Complementary Information (in French) see:

Transitions énergétiques en France : enseignements d'exercices de prospective -*Contribution au débat national sur la transition énergétique* Ruben Bibas, Jean-Charles Hourcade

http://www.centre-cired.fr/IMG/pdf/CIREDWP-201351.pdf

Chaire Modélisation prospective au service du développement durable

CENTRE INTERNATIONAL DE RECHERCHE SUR L'ENVIRONNEMENT ET LE DÉVELOPPEMENT