Arbitrage between Energy Efficiency and Carbon Management

M. Thiboust, S. Selosse, N. Maïzi, V. Mazauric

Dec. 6th, 2011 UNFCCC – Durban – South Africa

The energy dilemma is here to stay

Energy supply Chain (from IEA 2007)

A tight equation towards sustainability

• Demography:

- Rise of energy systems in developing countries
- Refurbishment of existing capabilities in developed countries
- Urban population, from 50% today to 80% in 2100, claims for high density power networks

• The Earth: An isolated chemical system

- Fossil (and fissil) fuels depletion:
 - •Peak oil around 2020
 - •Peak gas around 2030 (excluding shale gas)
 - •Around two centuries for coal or Uranium
- Climate change:
 - •Whole electrical generation provides 45% of CO₂ emissions
 - •Global efficiency of the whole electrical system is just 27% (37% for all fuels)
 - •Despite a thermodynamic trend toward reversibility

• The Earth: A fully open energy system

- Domestic energy is 10.000 times smaller than natural energy flows: Solar direct, wind, geothermy, waves and swell
- But very diluted and intermittent

Energy efficiency modeling

Schneider Electric - Strategy & Technology – V. Mazauric – Dec. 6th, 2011

Abatement strategies and competitions

• Energy efficiency:

- Demand side included in the techno
- Supply side add-ins, extra invests

• CO₂-free technologies:

- CCS extra consumption
- Nuclear risk, waste

→ Potentially compete with EE...

• Renewables reliability

→Usually defined as input (to reach...)

• Beyond the forecast...Long-term exercises!

 "bottom-up" technology models are relevant for industry <u>www.modelisation-prospective.org</u>

Schneider Electric - Strategy & Technology - V. Mazauric - Dec. 6th, 2011

Modeling issues

• The TIAM-FR model:

A technical linear optimization model driven by demand achieving a technico-economic optimum:

- for the reference energy system:
 - •3,000 technologies,
 - •500 commodities;
- subject to a set of relevant technical and environmental constraints
- over a definite horizon, typically longterm (50 years)
- 15 regional areas

Energy efficiency implementation costs

Climate scenarios for 2020

	Europe	USA	China
Business As Usual	No constraint		
COP15 – 80%	20% more constrained than COP15		
COP15 – 85%	15% more constrained than COP15		
COP15 – 90%	10% more constrained than COP15		
COP15 – 95%	5% more constrained than COP15		
COP15	20% on emissions (1990)	17% on emissions (2005)	40% on Carbon intensity (2005)
COP15 – 105%	5% less constrained than COP15		
COP15 – 110%	10% less constrained than COP15		
COP15 – 115%	15% less constrained than COP15		
COP15 – 120%	20% less constrained than COP15		
COP15 – 125%	25% less constrained than COP15		
COP15 – 130%	30% less constrained than COP15		

Rate of energy efficiency implemented at the demand side in the industry sector

- No implementation for BAU
 - Investments are driven by the climate constraint, not by the economic returns
- The rate grows with the climate constraint
- China has the lower rate of implementation
- Stronger sensitivity for USA and Europe than for China

Energy Efficiency implementation at the demand side in industry

Percentage of EE in the non-metal minerals industry in 2020

Percentage of EE in the pulp and paper industry in 2020

45 BAU 40 Cop15-130% 35 Cop15-125% Cop15-120% 30 Cop15-115% 25 Cop15-110% 20 Cop15-105% 15 Cop15-100% 10 Cop15-95% 5 Cop15-90% 0 Cop15-85% China USA Western Europe Cop15-80%

Percentage of EE in the iron and steel industry in 2020

Percentage of EE in the non ferrous metals industry in 2020

Percentage of EE in other industries in 2020

Energy Efficiency market in industry

• No saturation for USA and Europe

Generation Mix sensitivity

- Low sensitivity to a weaker constraint
- High sensitivity to a stronger constraint
 - Coal substitution by nuclear, gas, geothermy
 - Coal phase-out for Cop15-80% !

- Vanishing sensitivity to a weaker constraint
 - BAU til COP15-105% !
- High sensitivity to a stronger constraint
 - Replacement of coal by gas

Competition with CCS

- Low level of CCS in 2020
- Only driven by EE potential saturation in Europe

• CCS is a long-term solution