

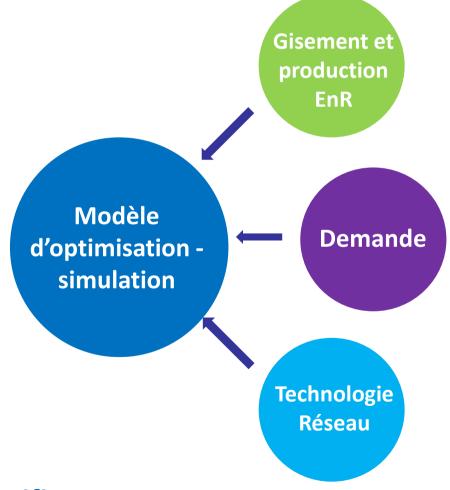
Anne-Laure Dubilly, service « Réseaux et énergies renouvelables » de l'ADEME 13 mai 2016

Agenda

« Un travail d'exploration des limites du développement des énergies renouvelables dans le mix électrique métropolitain à un horizon 2050 »

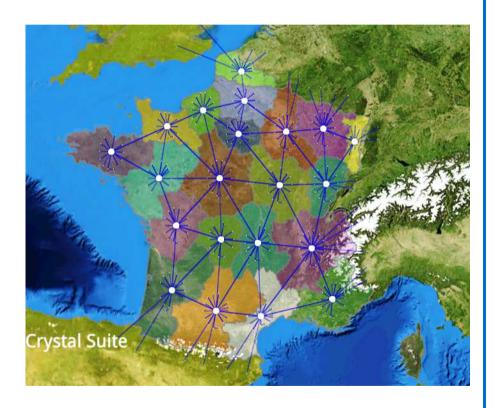
- 1. Contexte et objectifs de l'étude
- 2. Méthode et hypothèses
- 3. Résultats

Agenda


- 1. Contexte et objectifs de l'étude
- 2. Méthode et hypothèses
- 3. Résultats

L'étude a pour objectifs de répondre aux questions :

- Est-il possible d'avoir un mix électrique 100% renouvelable ?
 à un horizon de temps éloigné sans considérer une trajectoire
- Sous hypothèses, quel serait le/(les) mix électrique optimal et les contributions des différentes filières ?
- Quelle serait la répartition géographique des moyens de production ?
- Quels impacts économiques d'un tel mix ?
- tel mix ?


 → Etude à vocation technique et scientifique

Les périmètres géographique et énergétique

Quels territoires?

- Maille régionale : 21 régions
- Interconnexions avec les pays frontaliers
- Les mix européens sont 80% EnR

Quelles énergies ?

Interactions avec:

- les réseaux de chaleur Power to Heat
- le réseau de gaz : Power to Gas et Gas to Power

Quelle définition du 100% EnR?

- Bilan équilibré des imports/exports
- Bilan équilibré entre production de gaz en P2G et consommation en G2P

Le modèle construit un mix renouvelable distribué sur les régions, et optimise la gestion des moyens de production.

Modèle d'optimisation simulation

A chaque étape d'optimisation, le modèle arbitre entre :

- Installer un nouveau moyen EnR
- Construire une capacité réseau
- Construire de la flexibilité

Contrainte: équilibrer offre et demande, chaque heure de l'année, sur 7 années météorologiques

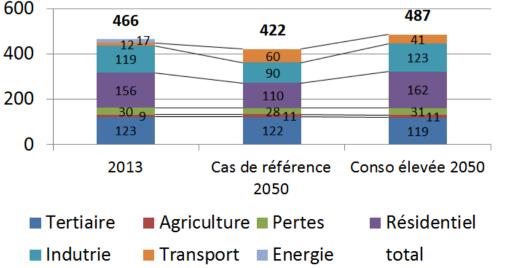
Objectif: minimisation du coût de l'électricité

Plusieurs variantes et analyses de sensibilités autour d'un cas de référence

	Pénétration EnR	40%	80%	95%	100%
	Cas de référence	1	1	1	1
Variantes Stabilité	Renforcement du réseau plus difficile				1
Var. optabilier	Consommation plus élevée				1
Variantes acceptabilité comportemen	Acceptabilité modérée de l'éolien et PV sol		1		~
·011.	Acceptabilité restreinte de l'éolien et PV sol				1
	Coûts techno élevés et acceptabilité restreinte		1	ŏ	
Variantes « économie	Coûts technologiques plus élevés				1
Naula nomie	Coûts technologiques plus faibles				-
" ECO.	Taux d'actualisation plus faible				1
	Année sèche				1
riantes	Sans photovoltaïque				1
Variantes Contrastes	Sans éolien de Nouvelle Génération				1
" Co	Sans flexibilité dynamique de la demande				1
	Prise en compte du réseau de répartition	1			1

Agenda

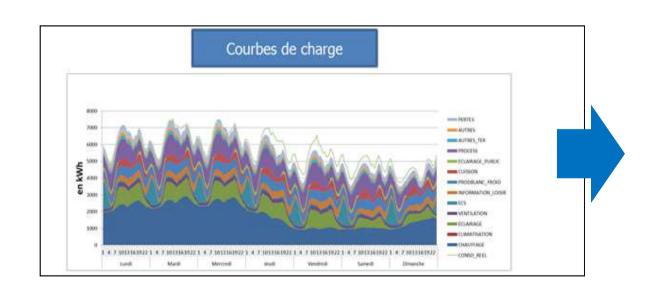
- 1. Contexte et objectifs de l'étude
- 2. Méthode et hypothèses
- 3. Résultats

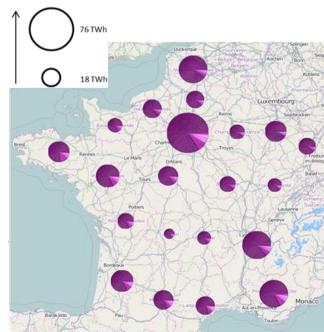


> Un volume en baisse, mais de nouveaux usages couverts;

une structure en forte évolution.

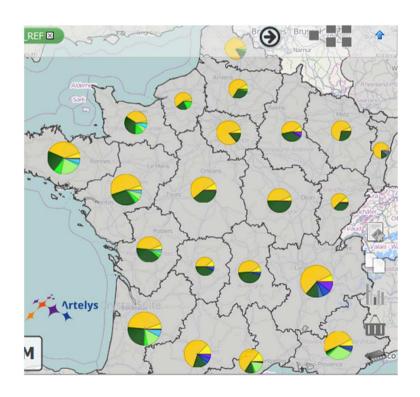
	2013	ADEME 2050	2050 Consommation élevée	
Volume (TWh)	466	422	487	
Pointe (GW)	~100	96	134	
Thermosensibilité (MW/°C en moins)	2300	1500	3300	
600 —	466	422	487	




Hypothèse structurante 1: flexibilité de la demande

Des hypothèses fortes de pilotage de la demande

- 4 usages sont concernés par le pilotage
- 3 modes de pilotage de la demande :
 - Pilotage de l'ECS et usages blancs : 15 TWh
 - Pilotage des chauffages : 35 TWh, report complet
 - Pilotage de la recharge de véhicules électriques : 16 TWh



Hypothèse structurante 2: gisements EnR

Des gisements renouvelables disponibles abondants

- Approche cartographique avec zones d'exclusion
- Application de ratios d'acceptabilité

Energie disponible: environ 1250 TWh

•	Energies marines	13 GW
L	Energies hydrauliques	30 GW
•	Energies géothermiques	0,14 GW
•	Biomasse	3,5 GW (*)
•	Energies solaires	47 GW sol et 364 GW toit
L	Energies éoliennes	172 GW (ou
		120GW en
		éolien nouvelle
		génération) et
		66 GW en mer

Les hypothèses de coût complet des technologies (LCOE)

	Valeur actuelle	Valeur cible 2050
Eolien terrestre	~ 80 €/MWh	65 €/MWh
Eolien en mer posé	~ 200 €/MWh	80 €/MWh
PV au sol	~ 150 €/MWh (CRE2014)	60 €/MWh
PV en toiture	~ 250 €/MWh (ISB-IAB)	85 €/MWh
Energies marines	~ 250-300 €/MWh	110 €/MWh

Méthode:

- Étude bibliographique
- Valeurs objectifs en phase avec les hypothèses AIE, Fraunhofer, SRU...

Exemple éolien : Valeurs différenciées par région

Agenda

- 1. Contexte et objectifs de l'étude
- 2. Méthode et hypothèses
- 3. Résultats

1. P

Plusieurs mix électriques permettent d'assurer l'équilibre horaire à 100% EnR, selon différentes contraintes

- Toujours majoritairement basés sur le PV et l'éolien
- Sans défaillance sur des événements météo défavorables

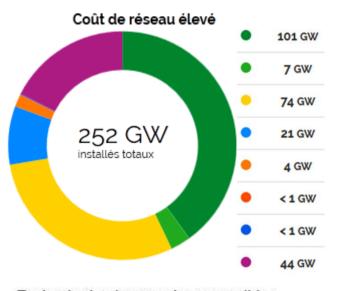
2.

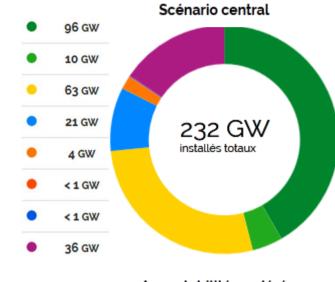
Le coût de l'électricité produite dépend peu du taux d'EnR,

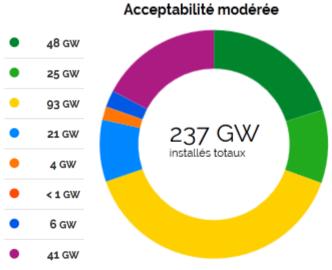
- Mais surtout de la MDE, de l'acceptabilité et des progrès technologiques.
- 3.
- La flexibilité et le stockage sont indispensables
 - La flexibilité de la demande complémente la variabilité journalière des EnR
 - Transfert de 19 TWh (4%) de production EnR via le stockage intersaisonnier
- 4.

Le développement du réseau inter-régional est nécessaire pour mutualiser les potentiels

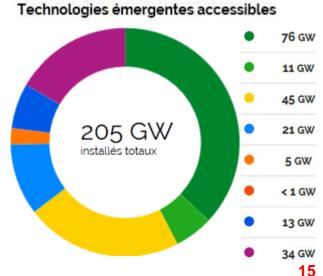
+ 36% de capacité de réseau inter-régional

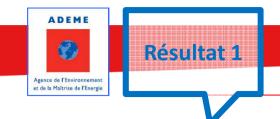


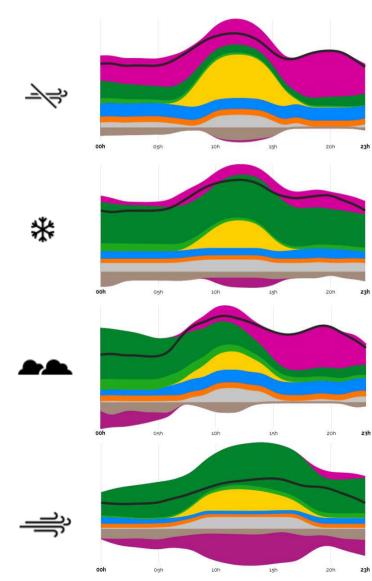


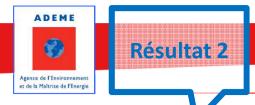

Plusieurs mix électriques 100% EnR

Selon les contraintes, plusieurs mix optimaux sont identifiés.


PV et éolien en sont les 2 piliers.



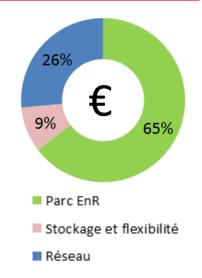


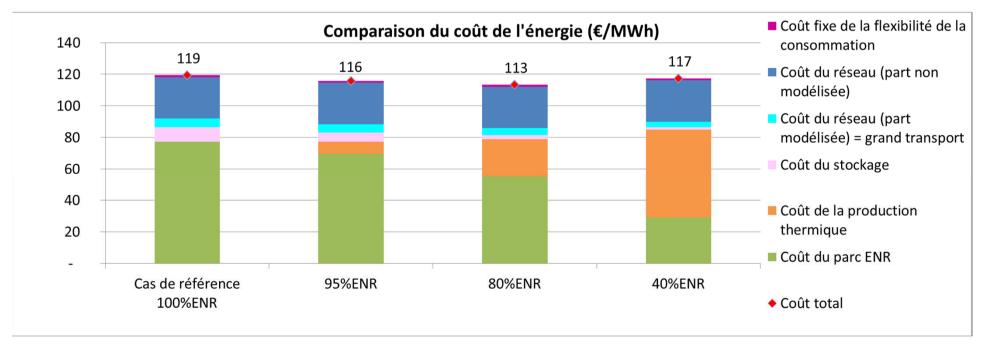


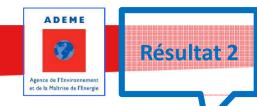
Plusieurs mix électriques 100% EnR

Les mix 100% EnR sont robustes face aux aléas météorologiques :

- Atouts méthodologiques :
 - Données de température (donc demande) et vent/ensoleillement cohérentes
 - Au niveau France et pays frontaliers
- Le mix retenu « fonctionne » sans défaillance pour 7 années météorologiques : juin 2006 à mai 2013

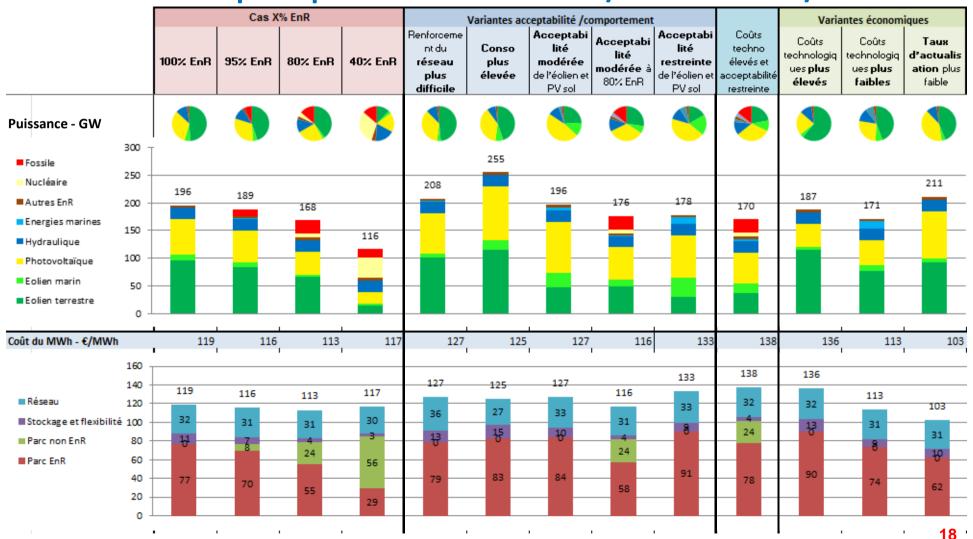


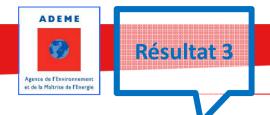



Les déterminants du coût: MDE, progrès techno, et acceptabilité

- Un coût de l'électricité d'environ 120€/MWh
- L'essentiel des coûts provient de l'investissement dans les moyens de production EnR
- Les coûts dépendent peu du taux d'EnR

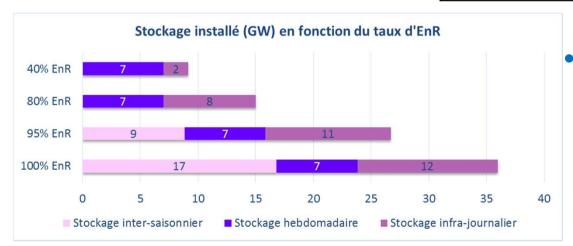
Un surcoût du mix 100% EnR de seulement 2% par rapport à un mix électrique 40% EnR



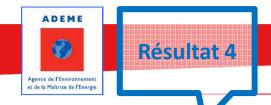


Les déterminants du coût: MDE, progrès techno, et acceptabilité

Bilan des principales variantes : 103 €/MWh → 138€/MWh



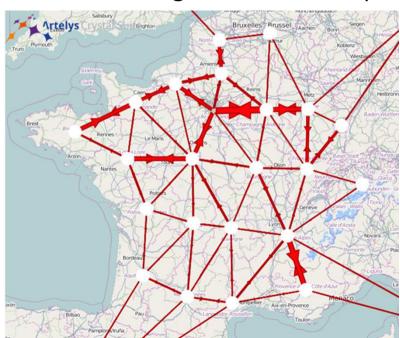
Flexibilité et stockage sont indispensables


Différents types de flexibilité pour différents horizons temporels

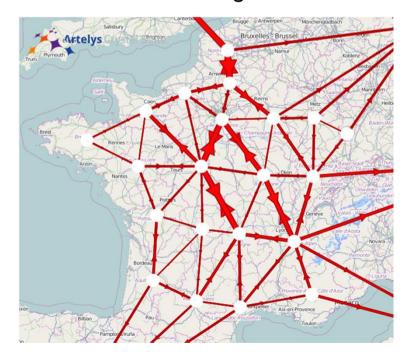
- 3 technologies de stockage en plus du pilotage de la demande
- Le stockage inter-saisonnier représente 19 TWh, soit 4% de la production annuelle

Pilotage de la demande	-8 / +22 GW
Stockage court terme (6 heures) – batteries, CAES	12 GW
Stockage hebdo - STEP (30 heures)	7 GW
Stockage inter-saisonnier - P2G2P	16,8 GW 17 GW

- La part relative des différents types de stockage dépend des contraintes de mix
 - Le stockage intersaisonnier disparaît sous 95% EnR
 - Le stockage journalier croît avec la part du PV



Le réseau permet de mutualiser les potentiels


Le développement du réseau est nécessaire et permet de mutualiser les potentiels

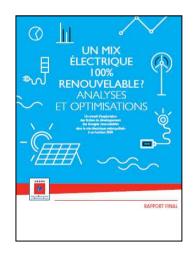
- Le réseau de grand transport augmente de 36% : 68 GW de capacités interrégionales, contre 50 GW actuellement (optimum calculé)
- 23 GW d'exports et 16 GW d'imports avec l'étranger

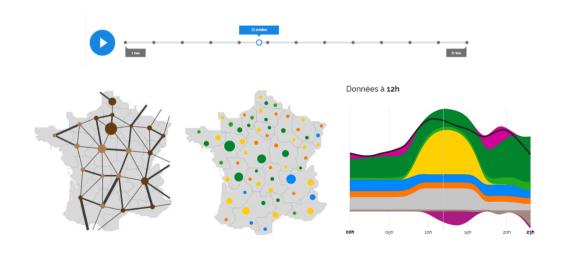
Réseau inter-régional 2013 « adapté »

Réseau inter-régional 2050

Plusieurs variantes ou approfondissements en cours :

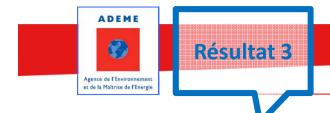
- Evaluation de l'impact macro-économique
 - Impacts en termes d'emplois et d'activité
- Elargissement du périmètre électrique :
 - Ouvrir les débouchés du P2G au secteur du gaz
 - Ouvrir les débouchés et technologies disponibles du P2H
 - → Vision plus large en vecteurs énergétiques
- Elargissement du périmètre géographique :
 - Variante franco-allemande
- Etude « Autonomie énergétique des Zones non interconnectées »
 - Premier cas d'étude : la Réunion
- Analyse de l'impact matériau d'un mix très renouvelable

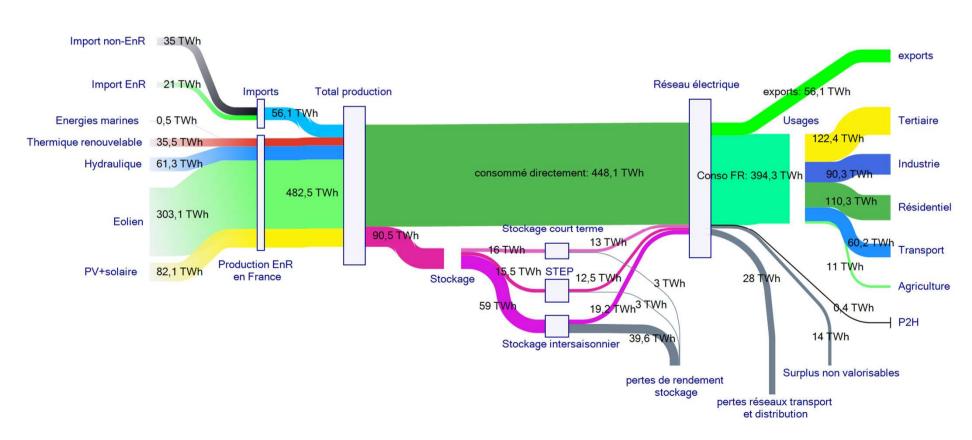

Merci de votre attention


Tous les résultats sur:

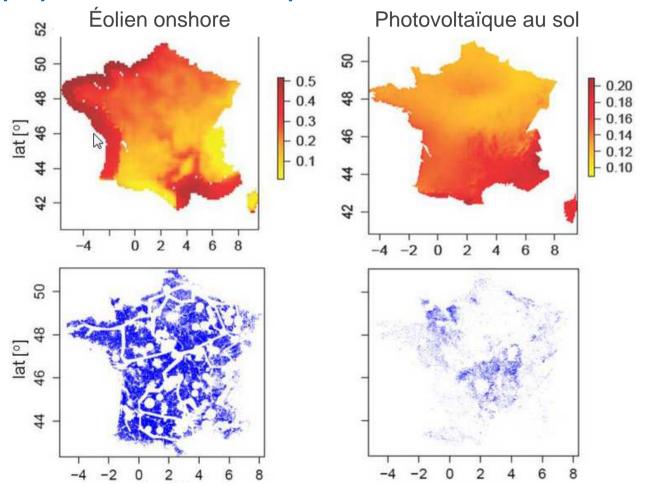
http://www.ademe.fr/mix-electrique-100-renouvelable-analyses-optimisations

Le détail des chroniques horaires:


http://mixenr.ademe.fr

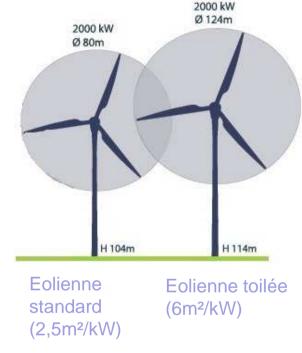


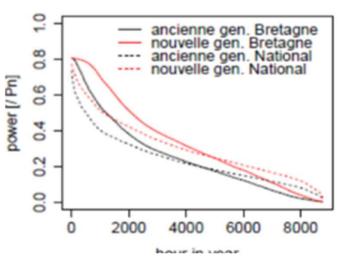
ANNEXES


Flexibilité et stockage sont indispensables


Des pertes liées au stockage bien prises en compte

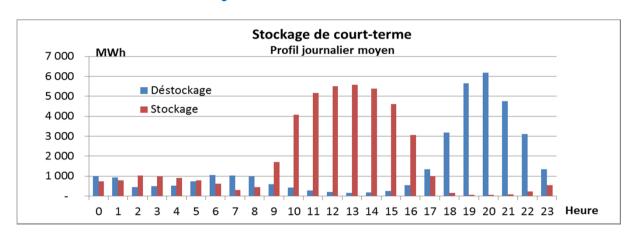
- Visuel des travaux d'élaboration des gisements éolien terrestre et PV au sol, réalisés par Armines
- Superposition des cartes de potentiels et des cartes de contraintes

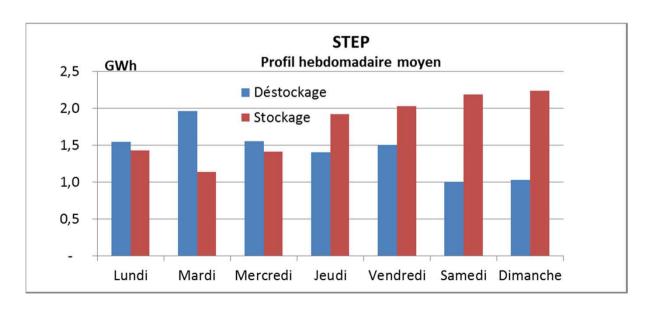




La complémentarité entre filières est essentielle

75% du parc éolien terrestre est de technologie « nouvelle génération »


- Plus grande pales, plus hautes
- Captent des vents plus faibles
- Atteignent plus vite leur puissance nominale
- Un profil de production plus « system- friendly » (moins de variabilité)



Flexibilité et stockage sont indispensables

Stockage court terme (batteries, CAES) : déplacement des heures méridiennes

Stockage STEP :déplacement des jours de week end vers la semaine

Un mix robuste face aux aléas météorologiques

Une variante sur l'hydraulique a été réalisée (sur année 2011 – la plus sèche des 50 dernières années)

Variante hydraulique -28% de productible

Augmentation de capacité EnR de 10 GW

- Positionnement en partie sur les régions hydrauliques
- Gisements les plus rentables restants notamment PV résidentiel + stockage court terme

(a) Intégration du réseau de répartition dans l'optimisation

Modélisation du réseau dans le cas de référence:

Réseau de distribution

- Non optimisé
- 9,4 Mds€ comptabilisés (hors pertes, raccordement)

Réseau de répartition

- Non optimisé
- 1,6 Mds€ comptabilisés

Réseau de grand transport

- Optimisé
- 2,2 Mds€ dans le cas de référence

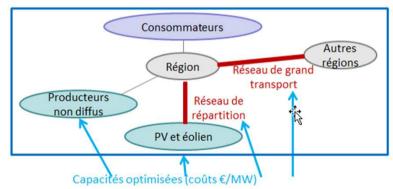
(a) Intégration du réseau de répartition dans l'optimisation

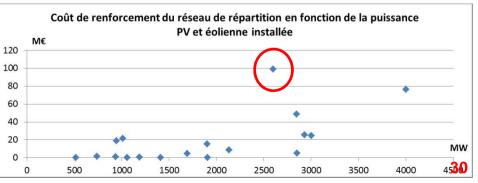
Modélisation du réseau dans le cas de référence:

Réseau de distribution

- Non optimisé
- 9,4 Mds€ comptabilisés (hors pertes, raccordement)

Réseau de répartition


- Non optimisé
- 1,6 Mds€ comptabilisés


Réseau de grand transport

- Optimisé
- 2,2 Mds€ dans le cas de référence

Méthodologie d'amélioration :

- Analyse des S3REnR →A partir d'une puissance installée seuil de 2,5 GW, existence d'un surcoût de répartition
- Variable explicative du coût des S3REnR : principalement la puissance installée éolien et PV.
- Coût retenu : celui d'une région saturée, Midi-Pyrénées : 70 M€/GW (non annualisés)

Résultats pour le cas 100% EnR:

- Arbitrages locaux qui favorisent les filières à meilleur taux de charge
 - Diminution de la capacité PV (-2,4 GW) au profit de l'éolien (+0,5 GW)
 - Diminution de la capacité d'éolien classique au profit de l'éolien surtoilé (+2,3 GW)
- Impact limité sur les coûts
 - 80 GW de réseau de répartition
 - Soit environ 500M€/an (1% des coûts totaux)

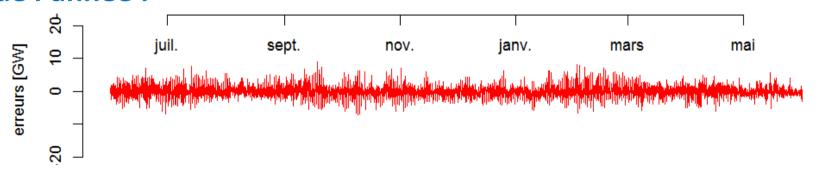
(a) Hypothèses de coûts du réseau de distribution

Réseau de distribution

- Non optimisé
- 9,4 Mds€ comptabilisés (hors pertes, raccordement)

Quels coûts?	Montant 2013 (Mds€)	Coûts pris en compte dans l'optimisation	Pris en compte a posteriori
Raccordement et renforcement	1.6	\checkmark	
Pertes en ligne	1.4	\checkmark	
Investissement (hors raccordement)	1.8	×	✓
Exploitation & petite maintenance	7.6	*	✓

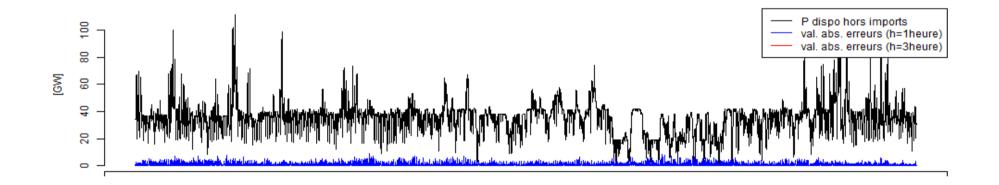
Pourquoi évaluer les coûts au même niveau que les coûts 2013 ?


- Parcs éoliens et Centrales PV majoritairement raccordées sur départs dédiés (donc pris en compte dans les coûts de raccordement)
- Installations PV en toiture (25 GW dans le cas de référence) supposées à 2/3 en grandes toitures
- Petites toitures supposées en autoconsommation

Les besoins de réserve associés aux erreurs de prévision

- Pour mémoire, les différents niveaux de réserve cumulent environ 3 GW en 2014.
- Deux questions posées :
 - Quel dimensionnement de la réserve associée aux erreurs de prévision EnR, à 1 heure ?
 - Y a-t-il des défaillances associées dans le scénario ?

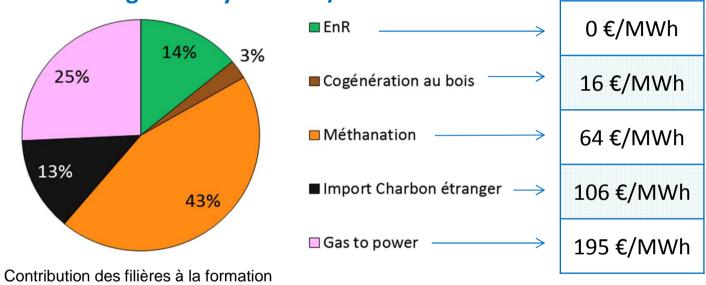
1) On estime un niveau d'erreur à 1 heure pour toutes les heures de l'année :



Min	1 ^{ER} QUARTILE	MÉDIANE	Moyenne	3EME QUARTILE	Max
-7.3	-0.769	-0.073	-0.0006	0.7	9.0

(b) Les besoins de réserve associés aux erreurs de prévision

2) Face à ce besoin de réserve, on estime un niveau de réserve disponible : TACs, stockages, surplus EnR et centrales biomasse pilotables (pas les interconnexions)


- Globalement seules 6 heures dans l'année posent problème, avec une pointe à 2,4 GW.
- Pistes de réflexion :
 - La flexibilité de la demande, dont industrielle pourrait résoudre ce besoin ponctuel ?
 - Recours aux interconnexions?

(c) Analyse des coûts marginaux

La question posée : quels coûts marginaux obtient-on ?

Coût marginal moyen : 93 €/MWh dans le cas de référence

- Ce prix SPOT moyen permet en moyenne de couvrir les coûts
- Points d'attention:

des coûts marginaux de production

- pour un mix électrique 100% EnR, le système de rémunération des acteurs serait amené à évoluer . On projette ici ce que donnerait le modèle de marché actuel.
- La volatilité plus forte sur le marché SPOT pourrait causer des problèmes de visibilité d'investissement