

Integrating social acceptance of energy projects in global long-term energy transition scenarios

Mathilde TESSIER, Sandrine SELOSSE, Nadia MAIZI

December 12th, 2019 – COP25 Madrid

Introduction

- Energy modelling to offer mitigation and adaptation solutions to the climate crisis
- Current scenarios non feasible due to lack of acceptance
- Need to find methods to include these questions into energy modelling

Plan

II. Parameters that rule social acceptance

Concepts at stake and points of view

- Acceptance : *a posteriori* evaluation of a project
- Acceptability : a priori evaluation of a project
- Support : active engagement **for** a project
- Opposition : active engagement against a project
- NIMBY (Not In My Back Yard):
 Opposition between a general positive opinion and a local opposition

Citizens: people living near the project who might oppose or support it.

Industrials: companies locally or nationally involved in the design or the realization of the project.

Decision makers: local and national politicians who have an impact on location decisions, public investments, etc.

Geographical focus

Social acceptance of energy projects: A geographical focus based on literature (based on the analysis of 96 papers)

Most important parameters

Geography:

- Continents and countries are not equally studied
- Absence of article doesn't imply Absence of the topic in the country

Democracy:

- Law and projects design process
- Trust and transparency

Projects:

- Distributive and procedural justice
- Risks
- Benefits

People:

- Gender, age
- Educational background

Modelling approach

Slide courtesy of Sandrine Selosse

TIAM-FR: French version of the TIMES Integrated Assessment Model

Optimization, linear programming

Minimization of the total discounted cost of the system

Bottom-up

Long-term: **2010**-2100

Multi-regional:15 regions (+T-ALyC)

Multi-sectors: 6 sectors

42 demands

Where

NPV is the net present value of the total cost for all regions over the projected period;

ANNCOST (r, y) is the total annual cost in region r and year y; *dr*, *y* is the discount rate;

REFYR is the reference year for discounting; YEARS is the set of years and R is the set of regions (15 regions)

11 646 commodities (about 770/region)

39 817 technologies (about 2 500/region)

Integrating acceptance in long-term scenarios

- Based on 1,5°C scenario
- Add some constraints about technology availability
- First : focus on WEU and on a nuclear ban in WEU

Focus WEU – sans nouvelles capacités nucléaires

Conclusion

- Taking into account acceptance has an impact on the scenarios
- Some discussions at the COP to refine the parameters
- Next steps: creation of quantitative indicators representing social acceptance to add them in TIAM

THANK YOU FOR YOUR ATTENTION

mathilde.tessier@mines-paristech.fr