

17^{ème} événement OSE / Journée de la CHAIRE MPDD

Transition énergétique : les déchets ne sont pas en reste!

9h00 - Ouverture

Introduction par Marc Daunis, Sénateur, Vice-Président de la Communauté d'Agglomération de Sophia-Antipolis, Conseiller municipal de Valbonne

Animation : Sébastien ROSE, GRT gaz

Animation : Apolline Faure, MS OSE

Transition énergétique : les déchets ne sont pas en reste! Concept, applications et enjeux

- 1. Les déchets, une ressource mondiale
- 2. Des politiques adaptées à l'enjeu?
- 3. Quelles méthodes de valorisation aujourd'hui?
- 4. Avenir, enjeux et controverses

Table-ronde 1: « Déchets et territoires, comment atteindre les objectifs de valorisation énergétique des déchets : quelles ressources, quelles valorisations, quelles problématiques d'intégration ? »

Intervenants: Elodie Montoroi, Véolia

Raphaëlle Grégory, Air Liquide

David Valour, Pizzorno Environnement

Claire Canonne, Akajoule

Amélie Himpens, GERES

Table-ronde 2 : « L'apport des réseaux à la valorisation énergétique des déchets »

Intervenants: Pierre Trami, GRDF

Franck Vincendon, GRT gaz Animation : Baptiste Calmette, MS OSE

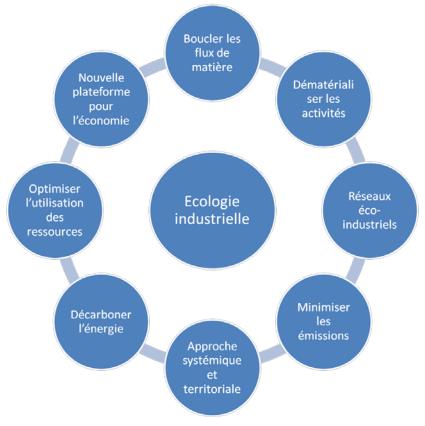
Arnaud Chapuis & Joseph Billaud, MiniGreenPower

16h30 : Mot de clôture

Transition énergétique : Les déchets ne sont pas en reste ! Concept, applications et enjeux de la valorisation énergétique des déchets

Animation : Sébastien Rose, GRT Gaz

L'écologie industrielle


Présenté par :

Adnane BAÏZ Michael CHAN

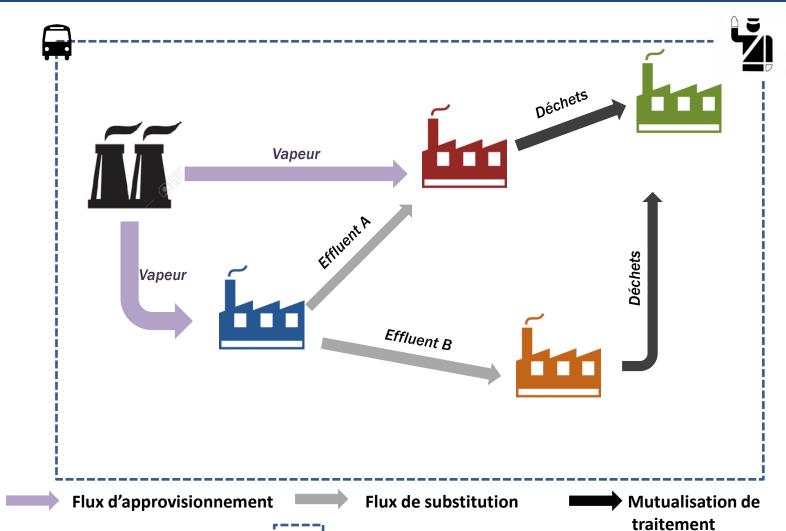
Définition

L'écologie industrielle est définie comme l'ensemble des pratiques destinées à réduire la pollution industrielle en s'inspirant des écosystèmes naturels.

Les missions de l'écologie industrielle (Source : EPFL, 2006)

Etat des lieux

Notion de « Parc éco-industriel » apparue lors de la Conférence des Nations Unies sur l'Environnement et le Développement à Rio de Janeiro en **1992**.

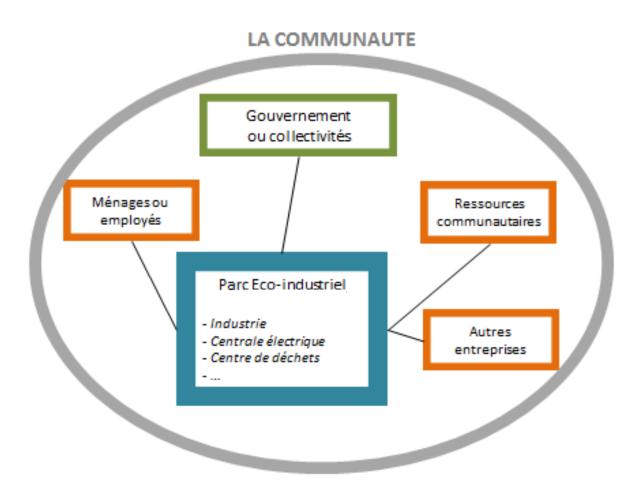

10% des zones industrielles sont concernés par l'écologie industrielle

Un concept **pluridisciplinaire** : économique, environnemental, sociétal, politique,..

Liste des projets en 2015, OREE

PSL RESEARCH UNIVERSITY PARIS MINES ParisTech

Types de synergies



Synergies d'infrastructure

MINES ** ParisTech

Acteurs concernés

Pour les entreprises :

- **Coût d'élimination** et de traitement des déchets fortement diminué, pouvant même devenir une source de revenu
- Accès à des programmes de subventions privées et publiques

Pour les collectivités:

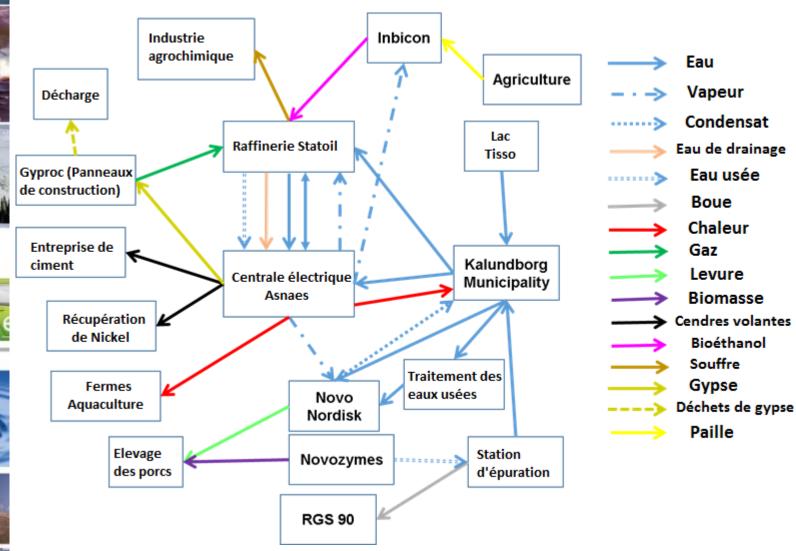
- **Réduction de la pollution locale** et des risques environnementaux
- Valorisation des ressources locales et attraction d'entreprises sur le territoire

Pour la communauté:

- collectives Amélioration des infrastructures (transports, télécommunications,...);
- Développement de la main d'oeuvre locale

Symbiose industrielle de Kalundborg

©Kalundborg, Denmark



Le parc éco-industriel de Kalundborg est la première réalisation de symbiose industrielle au Monde

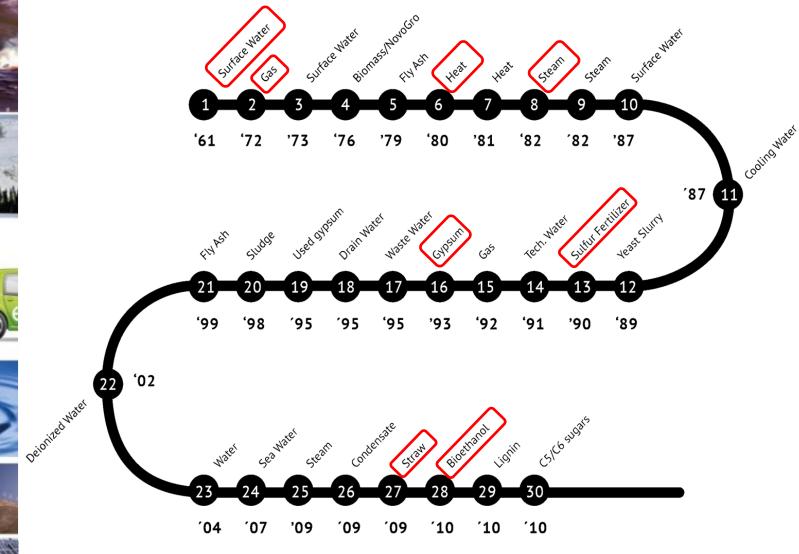

PSL RESEARCH UNIVERSITY PARIS MINES ParisTech

Schéma des synergies

Chronologie des synergies de Kalundborg

12

MS OSE- CMA- CHAIRE MPDD

Gains recensés sur le site de Kalundborg

Resource/emission flow	Saving (year)
Ground water	2,9 mill m ³ (2004)
Surface water	1,0 mill m ³ (2004)
Oil	45,000 Tn (1999)
Liquid sulphur	20,000 Tn (2006)
Biomass (yeast slurry)	42,500 Tn (2006)
Waste water	200,000 m ³ (2006)
Gypsum	170,000 Tn (2006)
CO2 emissions	175,000 Tn (1999)
SO2 emissions	10,200 Tn (1999)

Resources saving in Kalundborg symbiosis (2006)

Source: Christensen, personal communication 2006; Jacobsen, 2006; Chertow, 2001; Novo nordisk green accounts; Statoil environmental report

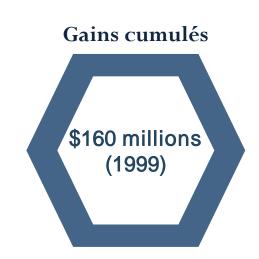
Chiffres clés du site de Kalundborg

Investissement initial

~\$75 millions

Gains de coûts estimés

~\$15 millions /an


Retour sur investissement

~5 ans

