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Objectives of integrated assessment
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— Integrated CC 1mpacts

— Uncertainty about uncertainty

Concluding thoughts



Background

* Objectives of Integrated Assessment?
— Understand complex geophysical-socioeconomic systems
— To set research priorities and analyze policy interventions
 Why integrate?

— To develop understanding, insights and information not
available through disciplinary research

 Why model?
— To keep track of what 1s going on

— Some parts of a modeling system may be more formal
than others

* Why first principles?
— To 1nsure the framework has solid foundations
— The more complex the model the easier it 1s to mess up




Basic Concepts of Integrated Assessment

Ocean/Atmosphere/Atmospheric Chemistry
— Conservation of momentum
— Conservation of mass
— Conservation of energy
— Chemical Reactions

Eco-systems

— Photo-synthesis

— Conservation of mass

— Conservation of energy

— Bio-Geo-Physical-Chemical Processes
Socio-economic System

— Birth and Death

— Resource allocation, optimization and market equilibrium

— Technology change and choice

— Investment and Growth

Plus a lot of uncertainty stuff discussed later



Central Question(s)

Question

What 1s a good model? scenario? way to deal with
uncertainty? Approach to model assessment?

Answer

It depends on the question being asked.



A Few Modeler Perspectives
We Would Like to Avoid Here

* [ts not in my model, so it 1s not important

* It 1s 1n my model, but 1t 1s not important in my model, so
it 1s not important in the real world

* The real world has produced different outcomes than my
model has projected, so the real world must be seriously
Incorrect

* How dare you question my(our) intellectual dominance



State of the Artin 1995

Early C/B and integrated impacts models
Cost effectiveness analyses with both types

Targets (emissions, concentration, temps.) and
time tables

Tolerable windows (of climate and impacts) 1deas

Early uncertainty analyses
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Are We Integrated
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Two Kinds of
Integrated Assessment Models

* Policy Optimization Models
— Focused on Finding Optimal Level of Emissions
— Usually Include Impacts at the Aggregate Level

* Policy Evaluation Models
— Focused on Simulating Effects of Policies

— Usually More Detailed Impacts
— Can be Run Backwards - Tolerable Windows Approach
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DICE/RICE
Cost/Benefit Modeling Approach

Balancing the Costs of Controlling Carbon Emissions Against
the Costs of the Climate impacts They Cause

Marginal Cost
Value/Cost of Climate Impacts
of Emissions

Reductions

--------------------------------------------- ; Marginal Cost
' of Emissions Control

Carbon Emissions



Temperature change (C)

DICE/RICE RESULTS
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Process Analysis — Part of Core of MERGE and GCAM

Refining Transmission

Resour.ce and Transport  Conversion and lJDt|I|;|ng End Use
Extraction  Conversion Distribution evice
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Objective: Minimize Energy System Costs
Constraints: Satisty Energy Demands
Use Only Available Resources
Convert Energy Forms at
Efficiencies of Available
Technologies




I Eastern Europe

* Energy-Agriculture-
Economy Market
Equilibrium

14 Global Regions —
Fully Integrated

* Explicit Energy
Technologies — All
Regions

Fegional lator
force and lator
product vty

h 4

Regional GDP

Economic Activity |

GCAM-Circa?

Energy Supply

( Primary | '%ondary‘

Emissions

MAGICC
Tem pchange
SLR

SCENGEN
Clima®e change
patems

» Fully Integrated Agriculture and Land Use Model

» 15 Greenhouse Gases and Short-lived Species

» Typically Runs to 2100 in 15-year time steps



IMAGE-Circa 1995

RIVM IMAGE

IMAGE : A dynamic integrated assessment
modeling framework for global change

Change in GDP, population & others
i (i.e. scenario assumptions)
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WorldScan(economy model), and
PHOENIX (population model) feed
the basic information on economic

and demographic developments for
/ 17 world regions into three linked
Phoenk origScan subsystems (EIS, TES, and AOS?)

RIVM Environmental Research -1998 World Regions and Subregions

N 1 Canada 5NonernAtrica WM 9 OECD Europe WM 13 South Asia W 7 Japan

. 2 USA BN 6Westem Africa W 10 Eastern Europe I 14 EastAsia ~ 18 Greenland

B 3 Central America 7 Eastem Afica WM 11 Former USSR M 15 South Eastasia 18 Antarctca
4 South America [ & Southern Africa [l 12 Middie East I 16 Oceania

* EIS(Energy-Industry System), TES(Terrestrial Environment System), AOS (Atmospheric Ocean System)



MIT IGSM Framework-Circa 1995

Anthropogenic Emissions
Prediction and Policy
Analysis Model
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Prinn, R., Jacoby, H., Sokolov, A. R. Prinn, H. Jacoby, A. Sokolov, C. Wang, X. Xiao, Z. Yang, R. Eckhaus, P. Stone, D. Ellerman
J. Melillo, J. Fitzmaurice, D. Kicklighter, G. Holian, Y. Liu (1999). Climatic Change, 41(3), pp 469-546.



EPPA CGE Structure

Key dimensions of the EPPA model

Production sectors Consumer sectors
Non-Energy 1. Food and beverages
1.  Agriculture 2. Fuel and power
2. Energy-intensive industries 3. Transport and communicatior
3. Auto. truck and air transport 4. Other goods and services
4. Rail transport
5. Other industries and services
Energy
6. Crude oil
7.  Natural gas Primary Factors
8.  Refined o1l 1. Labor
9. Coal 2. Capital (by vintage)
10.  Electricity. gas and water 3. Fixed factor (agricultural land. fossil reserves)
Future Supply Technology
11. Carbon liquids backstop '
12.  Carbon-free electric backstop *
Regions (and abbreviations) Gases (and chemical formuli)
1. United States USA 1.  Carbon Dioxide CO,
2. Japan JPN 2. Methane CH,
3.  European Community EEC 3. Nitrous Oxide N.,O
4. Other OECD* O0E 4.  Chlorofluorocarbons CFC
5. Central and Eastern Europe * EET 5. Nitrogen Oxides NO
6. The former Soviet Union FSU 6.  Carbon Monoxide cO
7. Energy-exporting LDCs * EEX 7.  Sulfur Oxides SOx
8. China CHN
Q. India IND
10. Dynamic Asian Economies® DAE
11. Brazil BRA
12. Rest of the World ROW

Liquid fuel derived from shale.

Carbon-free electricity derived from advanced nuclear, solar, or wind.

Australia, Canada, New Zealand, EFTA (excluding Switzerland and Iceland), and Turkey.
Bulgaria, Czechoslovakia, Hungary, Poland, Romania, and Yugoslavia.

OPEC countries as well as other oil-exporting, gas-exporting, and coal-exporting countries (see
Burniaux et al., 1992).

Hong Kong, Philippines, Singapore. South Korea, Taiwan, and Thailand.

U
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MERGE (Manne-Richels)
Hedging Experiments

Hedging Against Bad Climate Outcomes
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State of the Art in 2015

* More refined CE analyses
— The four flexibilities: where, when, what, how,...

— The transition 1ssue — where you go in short run
conditions where you can go in the LR

* Impacts oriented
— More sectoral stressors and refined tolerable windows
— Starting to appreciate mitigation/adaptation interactions
— More empirical evidence, especially on impacts side

— Introduction of regional integrated assessments



Four Kinds of
Mitigation Policy Flexibilities
1. Where Flexibility
2. When Flexibility
3. How Flexibility
4. What Flexibility



Where Flexibility:
The Cost of Kyoto

Year 2010 Carbon Tax Comparision for the United States
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How Flexibility:
The VALUE OF DEVELOPING
NEW ENERGY TECHNOLOGY

(Present Discounted Costs to Stabilize the Atmosphere)

~$100,000
~ Minimum Cost
] 510,000 % Based on Perfect
. : Where & When
-$1,000 % FlClelllty
§ Assumption.
5100 é Actual Cost
2 Could be An
510 § Order of
= Magnitude
o5 c Larger.

Steady-State
CO2 750 advanced
Concentration technology

(ppmv)

BAU(1990)

BAU(Techt)

Technology Assumption

Battelle Pacific
Northwest Laboratories



GHG emissions (GtCO2 equiv.)
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See presentation by Nils Johnson in session on informing near term international policy discussion



Without policy — emissions and With policy — fixed emissions (675 ppm
climate response uncertain CO2eq), climate response uncertain

fp— Human
ealtl
" — cts
-
.
.
H Ny Examples of
‘: Model Outputs
B rowth,
energy use,
Sy

The MIT IGSM included uncertainty in both physical
and social science/economics aspects, captured in
formal uncertainty analysis to generate probabilistic
outcomes, represented here as Greenhouse
Gamble wheels.

COUPLED OCEAN,
ATMOSPHERE AND LAND

Land:
Water & Energy Budgets
[cLm)
Biogeochemical Process:
[TEM & NEM]




PNNL MiniCAM Land/Biofuels

SCIENCE VOL 324 29 MAY 2009
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Fig. 2. A comparison of global land use under different scenarios. (A)
Land use along the reference pathway. (B) Land use under a UCT pathway
defined to achieve a CO; concentration target of 450 ppm, which limits
fossil fuel, industrial, and terrestrial carbon emissions with a common
carbon tax on emissions. (C) Land use along the corresponding FFICT
scenario in which only fossil fuel and industrial emissions are controlled to
achieve the same 450-ppm CO, concentration. In the FFICT scenario, the
substantial increase in demand for purpose-grown biomass (four times as
much as the reference scenario in Year 2095) intensifies its competition
with food and fiber crops for the best cropland, pushing crops and biomass
growth beyond traditional croplands and into lands that are inherently less
productive. As a result, the relative increase in land required for biomass
and other crops exceeds the relative increase in demand.
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MIT IGSM

Exploring the Regional Consequences of a Changing Climate on

the Terrestrial Environment
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Fig. 3.9. Exploring the Regional Consequences of a Changing Climate on the Terrestrial Environment. Crop, pasture, and forest productivity are influenced
slgnificantly by ciimate change, CO, fertifization, and damage from ozone resulting from urban air pollution. For each of the economic regions in MIT's

IGSM, the figures show the effects on yield (crops) and net primary productivity (pasture and forestry) between 2000 and 2100 (gC/m?/yr).



Regional IA-PRIMA/RIAM

Coupling Options STAKEHOLDER DECISION Coupling Options
& Uncertainty Characterization SUPPORT NEEDS & Uncertainty Characterization

REGIONAL _ INTEGRATED
TG Gy A  Veather/ Climate SECTOR MODELS ASSESSMENT

MODEL MODEL
Building Energy

. Supply & Demand,
Atmosphere Weather / Climate Electricity Infrastructure Prices, Other Trends Energy-

Economy

'_‘ e _
Water

Land Cover Agriculture
Land & Water Feedbacks Sub-regional Detail & Land Use

Crop Productivity

Regional Detail
Additional Sectors

Boundary Conditions

GLOBAL EARTH GLOBAL
SYSTEM MODEL SCENARIO

Kraucunas, et al. (201X)




Some Newer IA Horizons

— Search for decision relevant metrics (growing interest)
 What to measure, how to measure 1t, how to deal with tradeoffs
* Income distribution and equity

 Sustainable development, energy poverty and energy access

— Integrated impacts (more work, needs focus and strategy)
 Risk analysis framing of [AV
* Interactions between sectors & feedbacks to earth system

» Reconciliation of statistical & physical modeling

— Uncertainty characterization and modeling (still messy)

« Identification of many different types of uncertainties
 Disciplinary differences in definitions, framing and methods

* The question of means versus extremes as the focus



Whither the Poor and Defenseless?
A Revealed Preference Study
of Climate Change Policy Analyses

Class of Typical OECD ROW Analysis
World Citizen (AEA Member?)
Analysis

2 Billion People What 2 Billion High Priority:
Without Markets People? Reduce Their

Vulnerability
2 Billion In or Near They Don’t Count High Priority:
Poverty with Fragile for Much! Reduce Their
Markets Vulnerability

2 Billion Potential ~ Half Are Stuck In They Can Take
Decaf Latté Transition, But the Care of
Drinkers Rest We Can Help Themselves



European CD-LINKS Project

CD-LINKS work packages

Capacity building, dissemination 6.,\&"
& stakeholder engagement: ,g,’"
CMCC & IIASA S

Past & existing policies:
COPPE & PIK

Ading
“‘“\“ ent

Current policies
& pledges: PBL

Future policies & their

implementation: CMCC CD-LINKS

CLIMATE
mitigation &
adaptation

1N3WdO13A3A
F19VNIVLSNS

LOCAL
NATIONAL

Analysis of multiple

g‘”l" SisAleue
objectives: TERI & IIASA dM

Long-term transformation
pathways: PIK & PBL

C,le'nks



Recent Trend Towards Establishing Frameworks
for Integrated Impacts Assessment

 Establishing innovative frameworks for developing

multi-sector, multi-scale, multi-model approaches for
IAV and the nexus of (IAMs, IAVs, and ESMs)

* This framework will provide:

1. The IAV community with methods and models for including
both multi-sector impacts and full earth systems interactions
and feedbacks in its work

2. The IAM community with enhanced capabilities to consider
fully linked multi-sector climate change impacts in its work

 Critical importance of linking, coupling, and emulation
(DRI Macro example)



Conceptual Representation of
Integrated Framework

Components of an integrated IAV system

Empirical-Statistical
Downscaling

Pattern Scaling

Emulation

Uncertainty Quantification

Fields
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Coarse-Scale Climate
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l Land Surface

within an integrated assessment framework
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Fisher-Vanden, et al. (2016)




Uncertainty Categories/Concepts

* Climate models
— Initial condition uncertainty
— Annual to inter-annual variability uncertainty
— Input uncertainty
— Structural uncertainty
— Parametric uncertainty

e JAMs

— Some of the above (do we need more?)
— Some of the below (or not so much?)

— Foresight by decision makers?

— Contingent decisions by decision makers

e JTAV models

— Some of the above (do we need more?)

— Tolerable windows/RPM thinking
— Risk assessment framing (need risk attitudes)

 In the aggregate this 1s a bit of a MESS



Approaches to Uncertainty Analysis

e Sensitivity analysis
» Stochastic simulation (MC, MCMC, etc.)
* Probability distribution “tail analyses”

* Decision Making Under Uncertainty
— Sequential DMUU
— Decision Analysis
— Stochastic Control

— Robust Planning
« ANOVA type methods (Sobols/MoM)



IPCC ARS: WG 2-Chapter 19
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Biggest Overall Challenges

Data availability and quality, including “big data”
More serious work on metrics

Staying true to first principles

Importance of linkages, emulators, translators

Uncertainty- consistency, statistics, experts,
structural, machine learning



Thank You!
Questions



What 1s Integrated Assessment
of Climate Change Policy?

* Many definitions of IA for many purposes

* Here we call integrated assessment of climate
change policy any attempt to bring together the
costs and benefits of climate change policies in a
systematic manner



