

Orienter la future transition énergétique vers le zéro émission nette de CO₂ : le cas de la France et de la Suède

<u>Ariane Millot^{a,*}</u>, Anna Krook-Riekkola^b, Nadia Maïzi^a

^aMINES ParisTech, PSL Research University, Centre for Applied Mathematics ^bLulea University of Technology, Department of Engineering Sciences and Mathematics

* corresponding author: ariane.millot@mines-paristech.fr

Chaire MPDD 2019

11 Nov. 2019

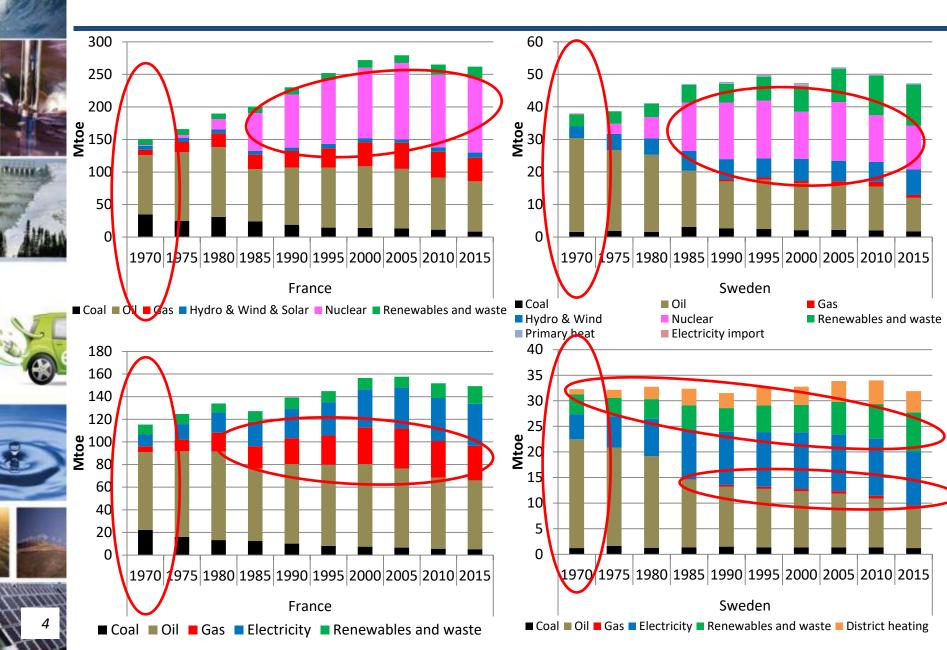
Introduction

Energy transition to low-carbon future will not occur spontaneously

France and Sweden: 2 similar countries

- High share of **nuclear** and **hydro** in electricity mix
- High potential of **biomass**
- Ambitious climate goals
- BUT also have differences

Can we get insights from how to achieve the energy transition to net-zero emission by comparing those two countries, which share similarities, but still partly have chosen different pathways? And if yes, which are those insights?



PAST EVOLUTION OF THE ENERGY SYSTEMS IN FRANCE AND SWEDEN

Primary and final energy consumption

Main drivers in both countries

	Area	France	Sweden	
	Nuclear program	 Launched after WWII Massive deployment enabled by: Strong support of the technocratic elite Economies of scale Since 2010: debate on the nuclear place 	 Launched after WWII Significant deployment enabled by: Support from the state and energy-intensive industries Since 1979: regular announcement of nuclear phase-out 	
0	Biomass	Until the mid-2000s: few measures to support Currently: development of biofuel and biogas	 Numerous measures to support its development : Research program Link with the forest industry Continued and consistent political support 	
2	District heating	No specific support due to low electricity price (overcapacity) and warmer climate	 Housing programs Support from municipalities, cooperation with energy industries 	
5	Carbon tax	Recent implementation but subject to strong protests → evolution currently stopped Ariane Millot – Centre for Applied Mathem	Tradition of energy tax Fiscal reform in 1991 → introduction a carbon tax, continuous and progressive increase since	

Two different approaches to energy policy 1/2

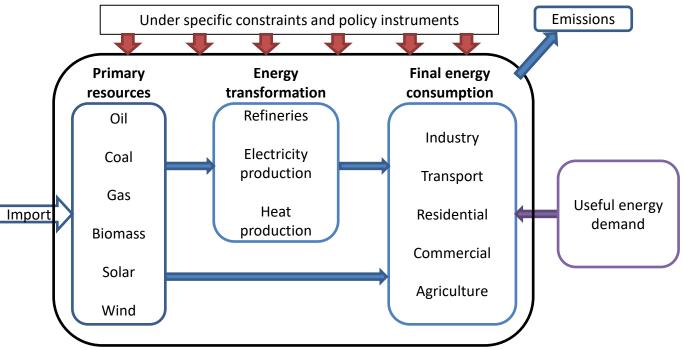
- France: A technocratic vision focusing on nuclear power
 - Significance of nuclear power in the French energy system
 - Other measures:
 - Implementation after the oil crisis but quickly abandoned (nuclear overcapacity)
 - Recently reinforced
 - Many challenges:
 - Reach law targets (French energy transition law for Green Growth)
 - Nuclear future: opening of Flamanville, decrease in the power mix, new construction, etc.
 - Evolution of the carbon tax

→ one energy transition (electricity sector)

Two different approaches to energy policy 2/2

- Sweden: A will to be a frontrunner that translates into multiple tools
 - Nuclear, biomass, district heating, taxes
 - Shift in the driver of energy policy: energy independence → nuclear reduction
 - Measures proved to be well suited for the introduction of the carbon tax \rightarrow CO₂ emissions reduction
 - Many successful evolutions:
 - High electrification of its energy system
 - High use of biomass (in particular in its industrial and residential sectors)

→ two energy transitions (electricity sector and heating sector)



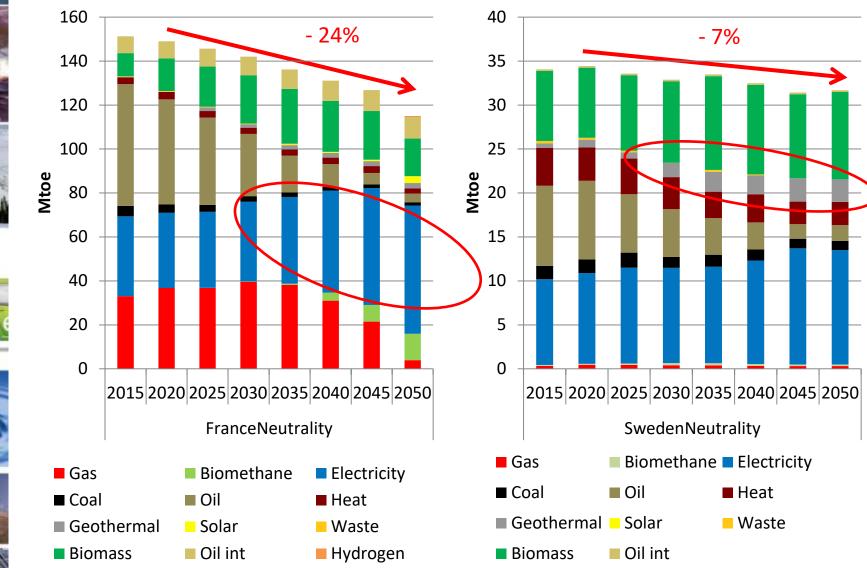
WHAT TRANSITION FOR THE FUTURE? COMPARISON OF PATHWAYS TO CARBON NEUTRALITY

The TIMES modelling framework

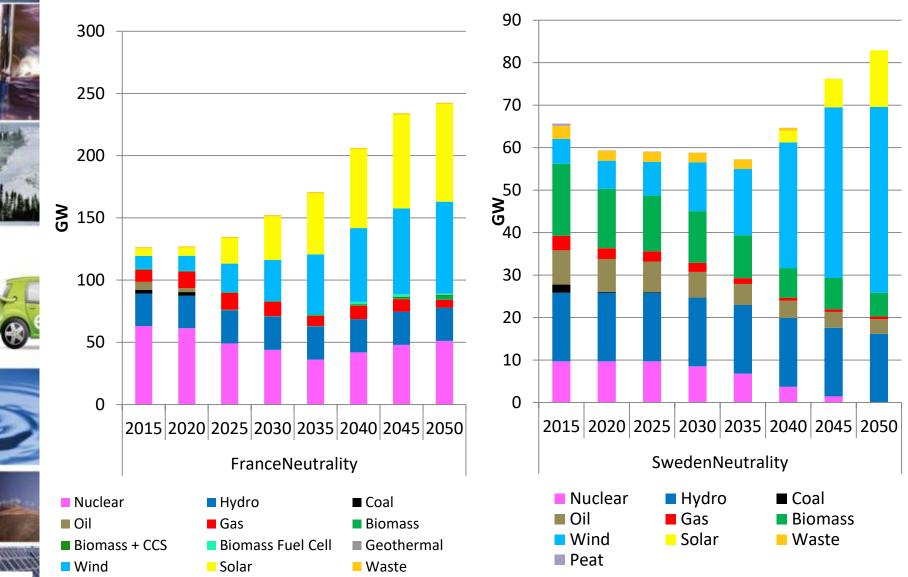
- Use of TIMES model : TIMES-France and TIMES-Sweden
 - A bottom-up optimization model driven by services demand
 - Reference energy system:

• Optimal choice of technologies by minimizing the overall discounted cost of the energy system over a specified horizon:

$$\sum_{y \in Years} (1 + d_y)^{REFYEAR - y^*} ANNCOST(y)$$

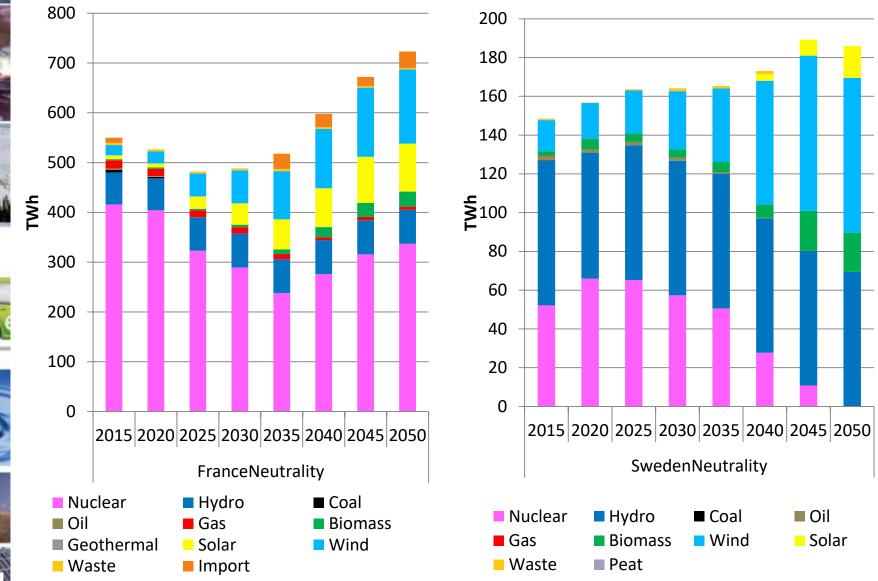

Ariane Millot - Centre de Mathématiques Appliquées – MINES ParisTech

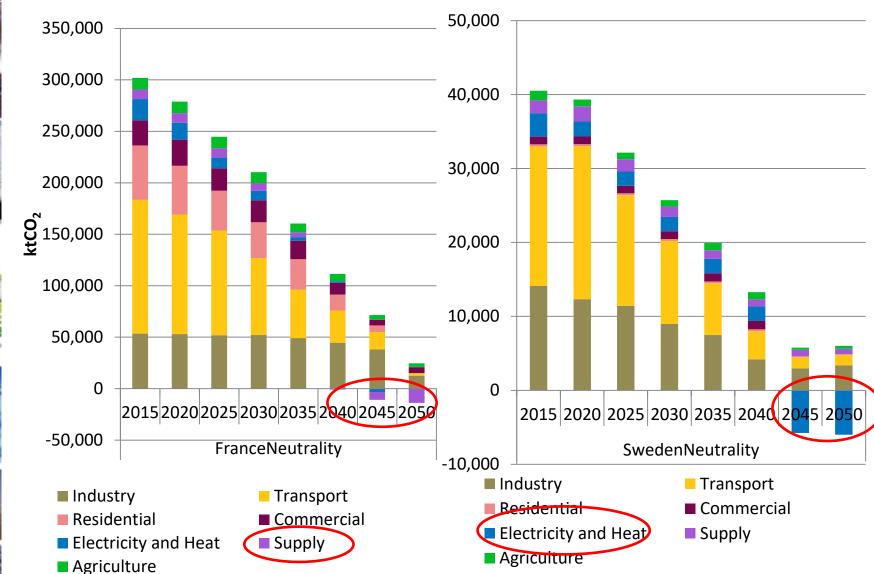
Two scenarios for carbon neutrality


- The models share the same:
 - Reference Energy System, with some national adjustments
 - Techno-economic database but with adaptation to national context
 - EU-ETS: EU Commission projection
 - Energy prices: WEO 2018
- Differences:
 - Discount rate: France 4.5% / Sweden 3.5% (official recommendations)
 - Demand: France official projections / Sweden official projections + link with a national CGE model
 - Carbon neutrality goals: France 2050 / Sweden 2045
 - Nuclear constraint in France: 50% by 2035
- Two scenarios:
 - FranceNeutrality
 - SwedenNeutrality

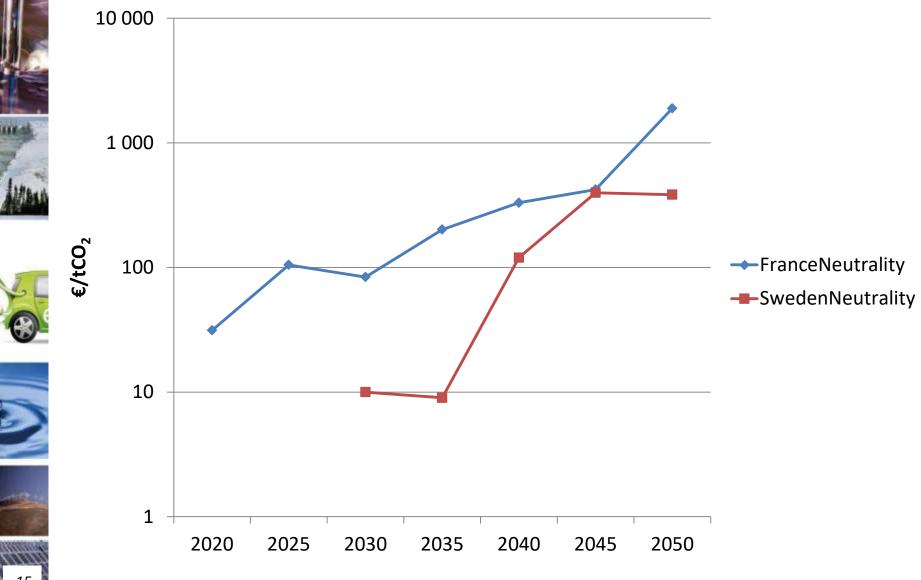
Final energy consumption

Power sector: capacities 1/2





Power sector: production 2/2



CO₂ emissions

Marginal cost of CO₂

Discussion and conclusion

- Importance of public policies to explain the past energy transitions in Sweden and in France:
 - Objectives were not environmental
 - Managed to decrease their oil dependence but through different measures
 - Sweden: developed measures that afterwards proved effective to reduce CO₂ emissions even if it was not their main goal
- Future energy transitions:
 - Different challenges in most sectors:
 - Sweden: Transport & Industry sectors
 - France: Electrification of its industry sector, transport sector, residential and commercial sector, decarbonization of gas consumption
 - Development of negative emissions
 - Resulting marginal cost indicates that Sweden goal is more realistic than the French one

THANK YOU FOR YOUR ATTENTION

ariane.millot@mines-paristech.fr

Policy implications

- Public policies should set realistic and achievable climate goals
- Targets should be supported by a long-term vision for the energy system → Investments in some technologies like nuclear or CCS must be anticipated.
- Consistent and long-term support for public energy policies
- Next question: governance issue

Energy system and economic indicators

1 m 1							
	Indicator	EU average		France		Sweden	
		1990	2016	1990	2016	1990	2016
	Population [thousands poeple]	475,188	510,277	58,227	66,730	8,527	9,851
	Population growth		7%		15%		16%
	GDP [Mrd EUR at 2010 exchange rates]	8,988	13,825	1,440	2,122	243	423
	GDP growth		54%		47%		75%
	GDP [Mrd EUR] per capita	18.915	27.093	24.732	31.801	28.455	42.990
	FEC per capita [Mtoe/cap]	2.3	2.2	23	2.2	3.7	3.3
	Energy per Capita [Mtoe/cap]	3.5	3.2	3.9	3.7	5.6	5.0
-	CO2 Fuel combustion	4,126	3,234	363	315	52	37
3	growth		-22%		-13%		-29%
	CO2 per Capita (energy system only) -	8.7	6.3	6.2	4.7	6.1	3.7
	kg CO2/cap						
	CO2 emissions - National total (incl.	4,545	3,637	407	357	59	45
	international aviation)						
	growth		-20%		-12%		-23%
	CO2 per Capita - kg CO2/cap	9.6	7.1	7.0	5.4	6.9	4.6
and the second	GHG emissions - National total (incl.	5,720	4,441	555	475	73	55
	international aviation)						
	growth		-22%		-14%		-24%
19	GHG per Capita - kg CO2/cap	12.0	8.7	9.5	7.1	8.5	5.6