

Vincent Mazauric, Schneider Digital, Grenoble vincent.mazauric@se.com

Limite physique des TICs ou quand l'immatériel devient matériel

Schneider Gelectric

Life Is On

ICT in energy systems

Control:

- Provide energy efficiency strategies in a context of tension between demand and supply
- Balance supply and demand in "real time" in a context of decreasing inertia
- Manage highly diluted assets and versatile loads within a general migration of the energy towards electricity
- Signal quality under variability: Enforce synchronism (clock) to provide the lowest dissipative grid

Forecast:

- Local weather to mitigate intermittency
- Predictive maintenance for highly dispersed energy assets

Role:

- Increase the knowledge on the energy system by decreasing its missing information; but
- Spoil the natural evolution of a system (2nd principle)
- Require a **processor** to gain information on the system... And reject a larger amount of missing information elsewhere!

Issue:

Is accurate information (local, real-time) sustainable from a thermodynamic viewpoint?

- 2 Computational viewpoint
- 3 Switching losses of logical functions
- 4 IT endogenization in RES
- 5 Conclusion and forthcoming issues

Energy viewpoint

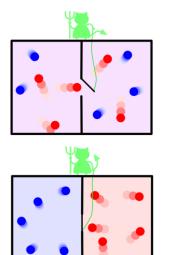
2nd principle of thermodynamics:

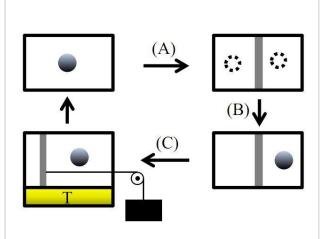

- Fix the minimum work W for any energy transaction (reversibility)
- Complement the energy transaction by heat Q (1st principle)
- The higher the degree of irreversibility, the larger the gap between the actual and the minimum works

Information/Entropy equivalence:

- H-Theorem (Boltzmann, 1872)
- Concept of missing information (Shannon, 1948)
- Equivalence between missing information and entropy *S* (Brillouin, 1956)
- 2nd principle is restored by the Maximum Entropy Principle to describe steadystates and provide time-arrow (Jaynes, 1957)

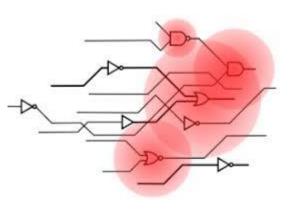
Processor appears as a cooling (but computing!) machine


C. E. Shannon, "A mathematical theory of communication," The Bell System Technical Journal, vol. 27, pp. 379-423, 1948. L. Brillouin, Science and information theory. New York, USA: Academic Press, 1956 E. T. Javnes, "Information theory and statistical mechanics," *Physical Review*, vol. 106, pp. 620-630, 1957.


Energy vs. Information: Which comes first?

A journey through Thermodynamic History

Maxwell's deamon (1867)


L. Brillouin: Maxwell's Demon Cannot Operate: Information and Entropy, Journal of Applied Physics, vol. 22, 1951, p. 334-337

Turing machine (1936)

Szillard's engine (1928)

L. Szillard: Über die entropyverminderung in einem tehermodynamischen system bei eingriffen intelligenter wesn, Zeitschrift für Physik 53, 840 (1929)

Landauer's principle (1961)

Computational viewpoint (so far)

Erasing a memory is an irreversible operation because, at the end of one cycle of the computing machine, the knowledge of the final state cannot provide the initial state

Information immunity:

- Binary coding
- Damping and barriers

From logical switches to gates:

- Reversible: NO
- Irreversible: AND, NAND, OR, NOR, XOR, NXOR
- Requires up to 6 switches per gate

Combinatory circuits (the output depends only on the inputs):

- Karnaugh tables
- Applications:
 - Operations (AND, no carry),
 - Comparators (NXOR),
 - Coding/decoding...

Sequential circuits (the output depends on the inputs and history):

- 1-bit latch (2 NAND or 2 NOR)
- Memory stack (carry)

• ...

Landauer's viewpoint (current paradigm):

- Is it possible to perform logical/binary operations without energy?
- Erasing a bit releases the entropy: $k_{\rm B}$ Ln2; whereas
- The energy to set a bit is given by the logical technology

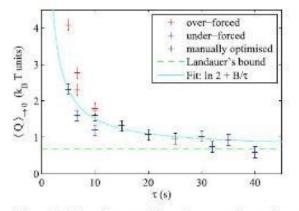
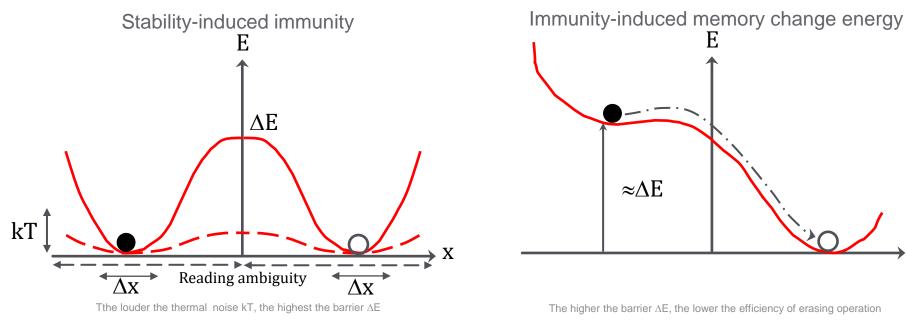



Figure 8. Mean dissipated heat for several procedures, with fixed τ and different values of $f_{\rm max}$. The red points have a force too high, and a $P_{\rm S\,force} \ge 99\%$. The blue points have a force too low and $91\% \le P_{\rm S\,force} < 95\%$ (except the last point which has $P_{\rm S\,force} \approx 80\%$). The black points are considered to be optimised and have $95\% \le P_{\rm S\,force} < 99\%$. The error bars are $\pm 0.15 \, k_{\rm B}T$ estimated from the reproductibility of measurement with same parameters. The fit $\langle Q \rangle_{\rightarrow 0} = \ln 2 + B/\tau$ is done only by considering the optimised procedures.

Figure from: A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz: Experimental verification of Landauer's principle linking information and thermodynamics, Nature, 483, pp. 187-192, 2012.

« Flip-Flop » memory

Logical electronics manages information and performs its reading:

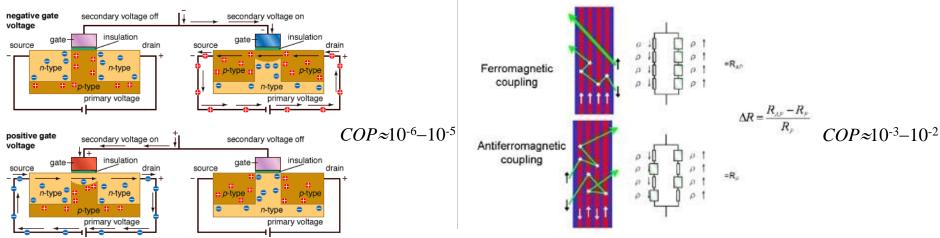
- Purely based on electric currents of free carriers (electron and holes)
- Association of spin- and charge-currents

Life Is Or

Logical structures and technologies

Maturity of the state of the art (on shelves)

Combinatory MOS Field Effect Transistor (µm scale):


- Voltage on the gate acts on depletion layer (2V)
- Measure logical state with source-drain current Switching energy: $40,000 \text{ k}_{B}\text{T}$ (dynamic losses)
- Static losses: leakages currents (polarization)

Giant Magneto Resistance effect (nm scale):

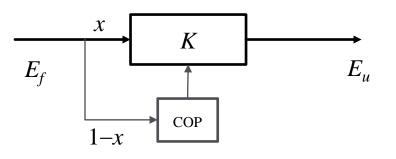
Magnetic field acts on anti-ferromagnetic multilayer structure

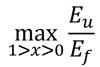
Life Is Or

- Electron diffusion by the magnetic structure is spin-
- dependent, leading to logical states Switching energy: 20k_BT (dynamic losses) •

V.K. Joshi: Spintronics: a contemporary review of emerging electronics devices, Engineering Science and Technology, an International Journal ,19, pp. 1503–1513 (2016).

(active) energy efficiency


"Beyond the meter"


Any process is characterized by an efficiency *K* depending on:

- Intensive variables (state variables of the Gibbs free-energy)
- Extensively and linearly from the input xE_f

Maximize the end-use service E_u regarding the final energy E_f :

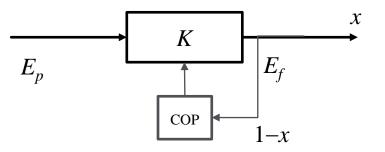
- Digitalization is efficient for large enough E_f ;
- The higher the COP, the bigger the potential for global efficiency

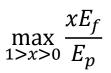
0<K<1 acts linearly from the input and depends on the information carried out by digitalization

COP is the coefficient of performance of data-processing

Digitalization of energy

IT endogenization in Reference Energy System


Control:


- Balance supply and demand in "real time" in a context of decreasing inertia
- Manage highly diluted supplying and stability assets with versatile loads
- Traceability of energy (from cardinal to factorial complexity)
- Signal quality under variability: Enforce synchronism (clock) to provide the lowest dissipative grid
- Cybersecurity, redundancy and resilience

Forecast:

- Local weather to mitigate intermittency effect
- Predictive maintenance to keep productive highly dispersed energy assets

Maximize the residual final energy xE_f regarding primary energy E_p

0<K<1 acts linearly from the input and depends on the information carried out by digitalization

COP is the coefficient of performance of data-processing

Conclusion and forthcoming issues

Sustainability of digitalization:

- is at concern with CMOS technology; and
- depends on forthcoming IT technology efficiency and its implementation (e.g., spintronics) •

Due to energy footprint of digital solution:

- digital and energy transitions (<2050-70) appear intricated; and
- Require long-term planning exercises including IT functional resources availability (energy/information/material > CO₂); ٠
- Magnetism is at the crossroads between energy generation and digitalization!

From a physical viewpoint, value distribution between data and energy also results from:

- Boltzmann constant k_{B} = 1.381 × 10⁻²³ J/K
- Coefficient of Performance of IT systems (currently around 10⁻⁶) •

Controversy:

- Physical entropy (Boltzmann):
 - Irreversibility is due to finite-time process
 - Dissipation is due to fluctuation of macro-state to reach equiprobability of micro-states
- Computational entropy (Shannon):
 - Irreversibility is due to the loss of memory of the inputs
 - Dissipation is due to stepping voltage charging of switches (50%) and erasure (50%)
- From Landauer's to Reversible computation paradigm

Adiabatic logic:

- Process switching energies through ramping voltage sources "Rewind" computation to recover switching energies
- •
- Trade-off between extra-memories management and erasure •

Massive parallelization:

- Slower computation to allow the latter; but ٠
- Need to consider new programming recipes and new • competencies

Quantum Computing...

Life Is On Schneider