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ICT in energy systems

Control: 
• Provide energy efficiency strategies in a context of tension 

between demand and supply

• Balance supply and demand in “real time” in a context of 
decreasing inertia

• Manage highly diluted assets and versatile loads within a general 
migration of the energy towards electricity

• Signal quality under variability: Enforce synchronism (clock) to 
provide the lowest dissipative grid

Forecast: 
• Local weather to mitigate intermittency

• Predictive maintenance for highly dispersed energy assets

Role:
• Increase the knowledge on the energy system by decreasing its 

missing information; but

• Spoil the natural evolution of a system (2nd principle)

• Require a processor to gain information on the system…
And reject a larger amount of missing information elsewhere!

Issue:
• Is accurate information (local, real-time) sustainable from a 

thermodynamic viewpoint?
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C. E. Shannon, "A mathematical theory of communication," The Bell System Technical Journal, vol. 27, pp. 379-423, 1948.

L. Brillouin, Science and information theory. New York, USA: Academic Press, 1956

E. T. Jaynes, "Information theory and statistical mechanics," Physical Review, vol. 106, pp. 620-630, 1957.

2nd principle of thermodynamics:

• Fix the minimum work W for any energy transaction (reversibility)

• Complement the energy transaction by heat Q (1st principle)

• The higher the degree of irreversibility, the larger the gap between the actual 
and the minimum works

Information/Entropy equivalence:

• H-Theorem (Boltzmann, 1872)

• Concept of missing information (Shannon, 1948)

• Equivalence between missing information and entropy S (Brillouin, 1956)

• 2nd principle is restored by the Maximum Entropy Principle to describe steady-
states and provide time-arrow (Jaynes, 1957)

Processor appears as a cooling (but computing!) machine
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Energy viewpoint
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Maxwell’s deamon (1867)

L. Brillouin: Maxwell's Demon Cannot Operate: Information

and Entropy, Journal of Applied Physics, vol. 22, 1951, p.

334-337

Landauer’s principle (1961)Szillard’s engine (1928)

L. Szillard: Über die entropyverminderung in einem

tehermodynamischen system bei eingriffen intelligenter

wesn, Zeitschrift für Physik 53, 840 (1929)
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Energy vs. Information: Which comes first?
A journey through Thermodynamic History

Turing machine (1936)
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Figure from: A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz: 

Experimental verification of Landauer's principle linking information and thermodynamics, 

Nature, 483, pp. 187-192, 2012.

Information immunity:
• Binary coding
• Damping and barriers

From logical switches to gates:
• Reversible: NO
• Irreversible: AND, NAND, OR, NOR, XOR, NXOR
• Requires up to 6 switches per gate

Combinatory circuits (the output depends only on the inputs):
• Karnaugh tables
• Applications: 

‒ Operations (AND, no carry),
‒ Comparators (NXOR), 
‒ Coding/decoding…

Sequential circuits (the output depends on the inputs and history):
• 1-bit latch (2 NAND or 2 NOR)
• Memory stack (carry)
• …

Landauer’s viewpoint (current paradigm):

• Is it possible to perform logical/binary operations without 
energy?

• Erasing a bit releases the entropy: kB Ln2; whereas

• The energy to set a bit is given by the logical technology
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Computational viewpoint (so far)
Erasing a memory is an irreversible operation because, at the end of one cycle of the computing machine, the knowledge of the final state cannot provide the initial state
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The higher the barrier DE, the lower the efficiency of erasing operationTthe louder the thermal  noise kT, the highest the barrier DE

Logical electronics manages information and performs its reading:

• Purely based on electric currents of free carriers (electron and holes)
• Association of spin- and charge-currents

Stability-induced immunity Immunity-induced memory change energy
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« Flip-Flop » memory
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Giant Magneto Resistance effect (nm scale):

• Magnetic field acts on anti-ferromagnetic multilayer structure
• Electron diffusion by the magnetic structure is spin-

dependent, leading to logical states
• Switching energy: 20kBT (dynamic losses)

V.K. Joshi: Spintronics: a contemporary review of emerging electronics devices, Engineering Science and Technology, an International Journal ,19, pp. 1503–1513 (2016).

Combinatory MOS Field Effect Transistor (µm scale):

• Voltage on the gate acts on depletion layer (2V)
• Measure logical state with source-drain current
• Switching energy: 40,000 kBT (dynamic losses)
• Static losses:  leakages currents (polarization) 
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Logical structures and technologies
Maturity of the state of the art (on shelves)

COP10-6-10-5 COP10-3-10-2
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0<K<1 acts linearly from the input and depends on the information carried out by 

digitalization

COP is the coefficient of performance of data-processing

Any process is characterized by an efficiency K
depending on:

• Intensive variables (state variables of the 
Gibbs free-energy)

• Extensively and linearly from the input xEf

Maximize the end-use service Eu regarding the 
final energy Ef :

• Digitalization is efficient for large enough Ef ;

• The higher the COP, the bigger the potential 
for global efficiency
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(active) energy efficiency
“Beyond the meter”
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0<K<1 acts linearly from the input and depends on the information carried out by 

digitalization

COP is the coefficient of performance of data-processing

Control: 

• Balance supply and demand in “real time” in a context of 
decreasing inertia

• Manage highly diluted supplying and stability assets with 
versatile loads

• Traceability of energy (from cardinal to factorial complexity)

• Signal quality under variability: Enforce synchronism (clock) to 
provide the lowest dissipative grid 

• Cybersecurity, redundancy and resilience

Forecast: 

• Local weather to mitigate intermittency effect

• Predictive maintenance to keep productive highly dispersed 
energy assets

Maximize the residual final energy xEf regarding primary energy Ep

Page 9Property of Schneider Electric |

Digitalization of energy
IT endogenization in Reference Energy System
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Sustainability of digitalization:
• is at concern with CMOS technology; and
• depends on forthcoming IT technology efficiency and its implementation (e.g., spintronics) 

Due to energy footprint of digital solution:
• digital and energy transitions (<2050-70) appear intricated; and
• Require long-term planning exercises including IT functional resources availability (energy/information/material > CO2);
• Magnetism is at the crossroads between energy generation and digitalization!

From a physical viewpoint, value distribution between data and energy also results from:
• Boltzmann constant kB= 1.381 × 10-23 J/K
• Coefficient of Performance of IT systems (currently around 10-6)

Controversy:

• Physical entropy (Boltzmann):

• Irreversibility is due to finite-time process
• Dissipation is due to fluctuation of macro-state to reach 

equiprobability of micro-states

• Computational entropy (Shannon):

• Irreversibility is due to the loss of memory of the inputs
• Dissipation is due to stepping voltage charging of 

switches (50%) and erasure (50%)

➔ From Landauer’s to Reversible computation paradigm

Adiabatic logic:

• Process switching energies through ramping voltage sources
• “Rewind” computation to recover switching energies
• Trade-off between extra-memories management and erasure

Massive parallelization:

• Slower computation to allow the latter; but
• Need to consider new programming recipes and new 

competencies

Quantum Computing…
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Conclusion and forthcoming issues
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