

22 Avril 2022

Retour sur le 6ème rapport du GIEC

Nadia Maïzi, co-auteure du 6ème rapport du GIEC, Mines Paris - PSL

AR6 Working Group III Authors, India, 2019

IPCC REPORT PROCESS

Report by numbers

278 Authors

65 Countries

41 % Developing countries 59 % Developed countries

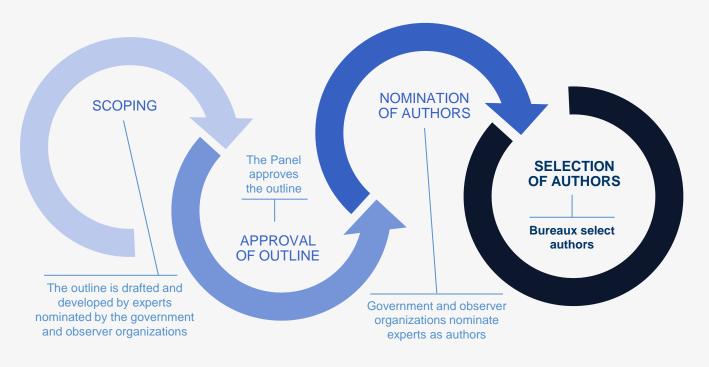
29 % Women / 71 % Men

47% first-time authors

354 Contributing authors

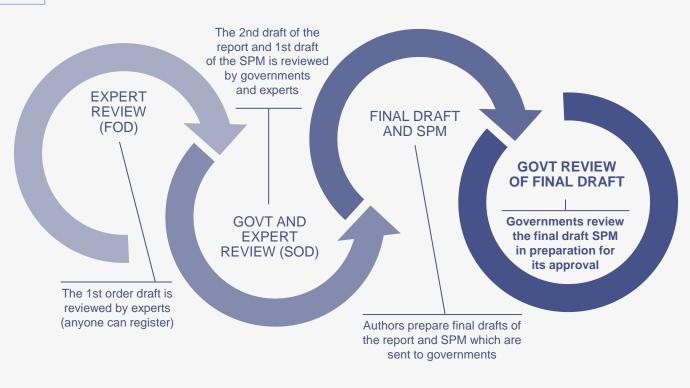
More than 18,000 scientific papers

59,212 Review comments

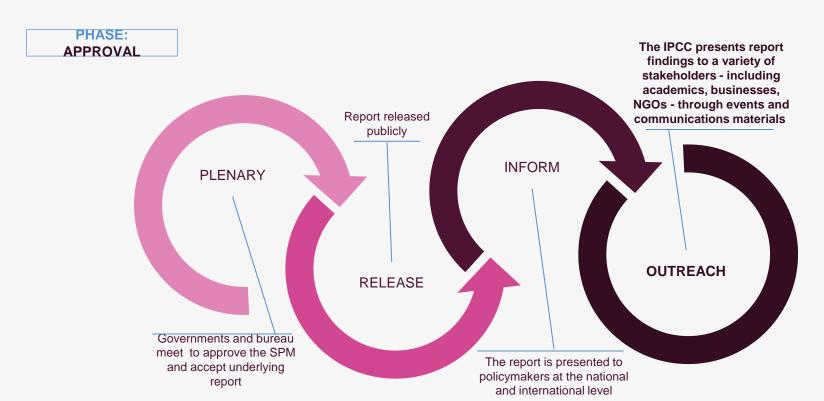

42 governments commented on Final Government Distribution

REPORT PROCESS | PREPATORY

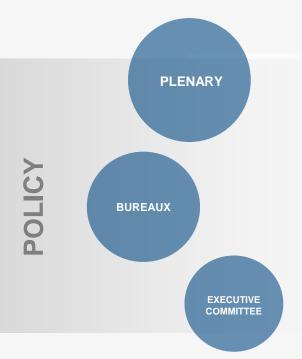
PHASE: PREPARATORY



REPORT PROCESS | DRAFTS



PHASE: DRAFTS


STRUCTURE | SCIENCE-POLICY INTERFACE

Policy and science work together to provide rigorous and balanced

scientific information on climate change

Intergovernmental Panel

195 member States appointing National Focal Points

WORKING GROUP I

The Physical Science Basis

WORKING GROUP III

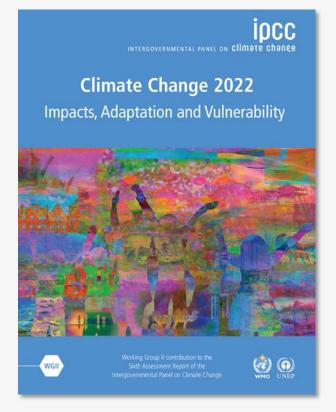
Mitigation of Climate Change

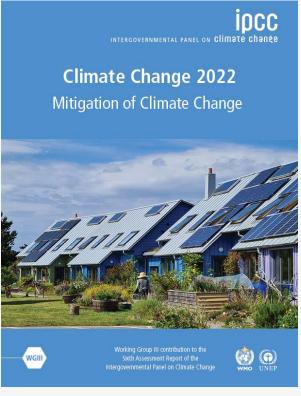
WORKING GROUP II

Impacts, Adaptation & Vulnerability

TASK FORCE ON INVENTORIES

Task Force on National Greenhouse Gas Inventories


Hundreds of scientists and experts from around the world are involved in the preparation of IPCC reports

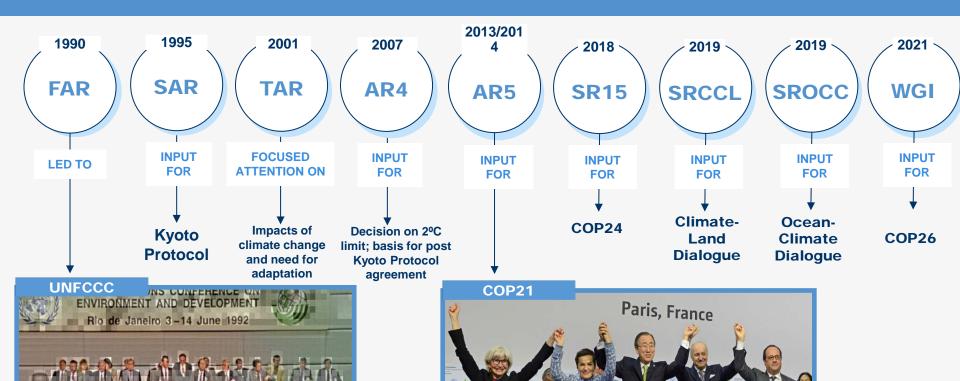

IDCC INTERGOVERNMENTAL PANEL ON Climate change Climate Change 2021 The Physical Science Basis Summary for Policymakers

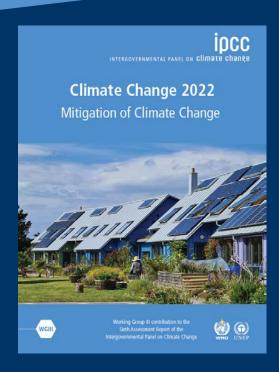
6 aout 2021

6ème rapport du GIEC : 3 volets

28 février 2022

4 Avril 2022

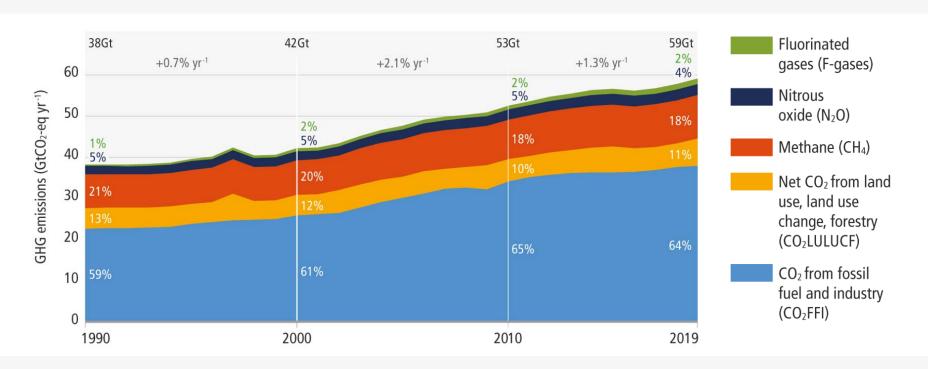


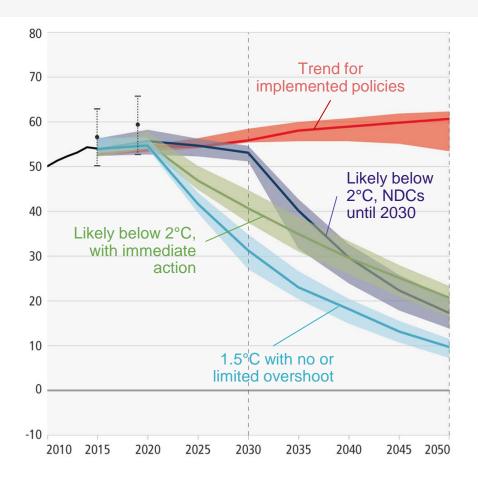


IMPACT | REPORT IMPACT

2010-2019: records d'émissions annuelles moyennes de gaz à effet de serre.

A moins de reductions immédiates et massives des émissions dans tous les secteurs, limiter le réchauffement à 1,5°C sera hors de portée.


 Des options sont disponibles maintenant dans chaque secteur et peuvent permettre de diviser par 2 les émissions d'ici 2030.



Nos émissions en 2019 sont 12% plus élevées que celles de 2010 et 54% plus élevées que celles de 1990.

Limiter le réchauffement à 1.5 °C

- Pic des émissions mondiales de gaz à effet de serre doit être atteint avant 2025, avec une baisse de 43% entre 2019 et 2030
- Réductions de 34% des émissions de methane d'ici 2030

Limiter le réchauffement sous 2°C

 Pic des émissions mondiales de gaz à effet de serre avant 2025, baisse de 27% d'ici 2030

(based on IPCC-assessed scenarios)

Demand and services

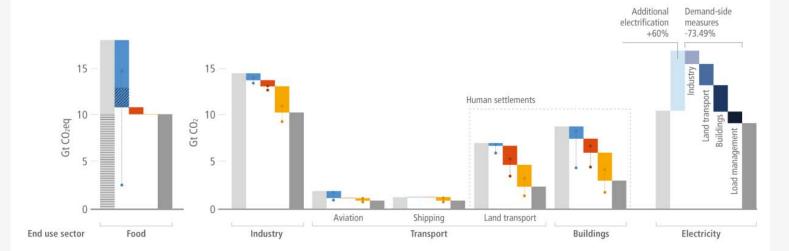
Land use

Industry

Urban

Buildings

Transport



Demand and services

- potential to bring down global emissions by 40-70% by 2050
- walking and cycling, electrified transport, reducing air travel, and adapting houses make large contributions
- lifestyle changes require systemic changes across all of society
- some people require additional housing, energy and resources for human wellbeing

Demand for service	Nutrition	Manufactured products	Mobility	Mobility	Mobility	Shelter
Socio-cultural factors	Shift in dietary choice with reduced animal protein; avoid food waste; avoid over-consumption	Avoid short life span products	Avoid long haul flights; shift to trains wherever possible	Currently not applicable	Teleworking or telecommuting; active mobility such as walking and cycling	Social practices in energy saving; and lifestyle and behavioural changes
Infrastructure use	Enhance the role of choice architectures & information; financial incentives; waste management; recycling infrastructure	Reuse and recycling	Currently not applicable	Currently not applicable	Public transport; shared mobility; compact city; spatial planning	Compact cities; built environment; living floor space rationalisation; architectural design; feedback control systems
Technology adoption	Currently not applicable	Access to materials- efficient services; access to energy-efficient and CO ₂ -neutral materials	Adoption of energy- efficient technologies; technologies with improved aerodynamics	Adoption of energy-efficient technology/systems	Electric vehicles; efficiency technologies	Adopting energy-efficient solutions; shift to renewables

Sixth Assessment Report WORKING GROUP III - MITIGATION OF CLIMATE CHANGE

Transport

- reducing demand and low-carbon technologies are key to reducing emissions
- electric vehicles: greatest potential
- battery technology: advances could assist electric rail, trucks
- aviation and shipping: alternative fuels (low-emission hydrogen and biofuels) needed
- Overall, substantial potential but depends on decarbonising the power sector.

Sixth Assessment Report WORKING GROUP III - MITIGATION OF CLIMATE CHANGE

Energy

- major transitions are required to limit global warming
- reduction in fossil fuel use and use of carbon capture and storage
- low- or **no-carbon** energy systems
- widespread electrification and improved energy efficiency
- alternative fuels: e.g. hydrogen and sustainable biofuels

- better urban planning, as well as:
- sustainable production and consumption of goods and services,
- electrification (low-emission energy),
- enhancing carbon uptake and storage
 (e.g. green spaces, ponds, trees)

There are options for existing, rapidly growing and new cities.

- buildings: possible to reach net zero emissions in 2050
- action in this decade is critical to fully capture this potential
- involves retrofitting existing buildings and effective mitigation techniques in new buildings
- requires ambitious policy packages
- zero energy and zero-carbon buildings exist in new builds and retrofits

Sixth Assessment Report WORKING GROUP III - MITIGATION OF CLIMATE CHANGE

Industry

- using materials more efficiently, reusing, recycling, minimising waste; currently under-used in policies and practice
- basic materials: low- to zero-greenhouse gas production processes at pilot to nearcommercial stage
- achieving **net zero** is challenging

Carbon Dioxide Removal

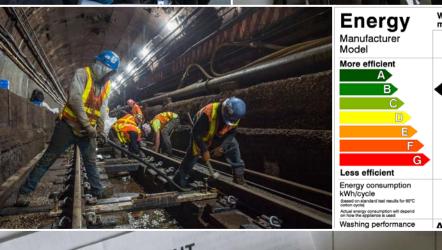
- required to counterbalance hard-to-eliminate emissions
- through biological methods: reforestation, and soil carbon sequestration
- new technologies require more research, up-front investment, and proof of concept at larger scales
- essential to achieve net zero
- agreed methods for measuring, reporting and verification required

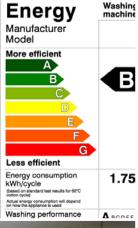
[Forest Service Northern Region CC BY 2.0, Fiston Wasanga/CIFOR CC BY-NC-ND 2.0, Climeworks]

- can provide large-scale emissions reductions and remove and store CO₂ at scale
- protecting and restoring natural ecosystems to remove carbon: forests, peatlands, coastal wetlands, savannas and grasslands
- competing demands have to be carefully managed
- cannot compensate for delayed emission reductions in other sectors

Sixth Assessment Report WORKING GROUP III - MITIGATION OF CLIMATE CHANGE

Closing investment gaps


- financial flows: 3-6x lower than levels needed by 2030 to limit warming to below 1.5°C or 2°C
- there is sufficient global capital and liquidity to close investment gaps
- challenge of closing gaps is widest for developing countries



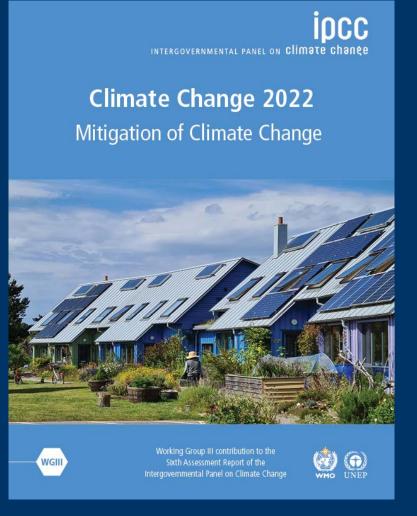
Policies, regulatory and economic instruments

- regulatory and economic instruments have already proven effective in reducing emissions
- policy packages and economy-wide packages are able to achieve systemic change
- ambitious and effective mitigation requires coordination across government and society

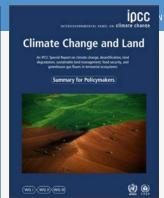
Technology and Innovation

- investment and policies push forward low emissions technological innovation
- effective decision making requires assessing potential benefits, barriers and risks
- some options are technically viable, rapidly becoming cost-effective, and have relatively high public support. Other options face barriers

Adoption of low-emission technologies is slower in most developing countries, particularly the least developed ones.



Sixth Assessment Report


Working Group III – Mitigation of Climate Change

Les faits sont clairs : C'est le moment d'agir !

SIXTH ASSESSMENT REPORT

