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IMACLIM-R is a twelve region, recursive 
hybrid general equilibrium model that 
in- cludes a technology-rich,bottom-up 
electricity module. The long-term invest-
ment decision is represented by a modi-
fied multinomial logit structure in which 
20 explicit technologies compete based 
on the most current electricity genera-
tion costs.  The cost  competition  takes 
place under imperfect foresight and 
with various possible regimes of beliefs 
about future climate policy. Key characte-
ristics of electricity supply are presented: 
Capital obsolescence, fuel efficiency, 
load factor, carbon capture and storage, 
renewable integra- tion challenges. Both 
investment and dispatch decisions are 
made on an annual basis, beginning in 
2015, to provide meaningful insights 
into future electricity systems, their 
contribution to climate change mitiga-
tion, and their linkages with the rest of 
the economy.
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I.	 INTRODUCTION 

Climate change mitigation goals require profound 
changes in socioeconomic production systems. This is es-
pecially true for the energy system (electricity and heat 
generation), which is responsible for 15.5 Gt CO2 emis-
sions in 2021, or 43% of energy-related CO2 emissions 
(IEA, 2021). Emissions from the power generation sector 
come from the com- bustion  of  fossil  resources,  namely  
coal,  oil,  and  gas,  in  existing  power  plants.  It  is now 
widely recognized that achieving ambitious decarbo-
nization targets requires a rapid phase-out of fossil fuel 
combustion. However, given the inertia of capital in this 
sector (power plants are expected to operate for decades), 
today’s option for power generation     is determined by  
the capacity built in the past.  Therefore, an accurate re-
presentation        of power generation capacity expansion 
decisions is key to capturing current and future power 
system developments needed to address climate change.
The presentation of the main characteristics of electricity 
systems ultimately requires consideration of two types of 
decisions made under techno-economic constraints:
the long-term choice of optimal capacity to match  
future electricity demand (invet- ment)
the short-term choice of capacity utilization to supply cur-
rent load (dispatch)

The investment and dispatch decisions are addressed in 
separate sub-modules of the elec- tricity module (or elec-
tricity nexus) of IMACLIM-R. Note that in our framework,  
the electricity sector refers to the sector in the macroeco
nomic core of IMACLIM-R, while     the electricity module 
or nexus refers to its dynamic, bottom-up counterpart.
Below, one will learn more about the modeling framework 
for investment and dispatch decisions. We begin with a 
characterization of the technical and economic conditions 
of electricity generation: section 2 describes the technical 
and cost assumptions underlying the choice of electricity 
generation capacity, while section 3 presents the inclu-
sion of demand-side and renewable energy generation 
constraints. The next sections detail the investment (sec-
tion 4) and dispatch (section 5) decision frameworks. Sec-
tion 6 details the link between the electricity nexus and 
the rest  of  the  economy,  while  section  7 presents the 
main results of the nexus.



	 A bottom-up description of electricity generation  conditions

II. Explicit electricity generation technologies described in terms of capital generation

Cost assumptions and technical change in the electricity sector. In the current version of  
IMACLIM-R, 20 technologies are available for investment in electricity genera- tion. Each of the 20 technologies 
is characterized by a set of techno-economic parameters that can be used to calculate the levelized cost of elec-
tricity (LCOE). These parameters include: Investment costs, energy efficiency, fixed and variable operation and 
maintenance costs, an availability factor for dispatchable technologies (in % of full load hours), a capacity factor 
for non-dispatchable technologies (in % of full load hours), lifetimes, and adiscount rate that includes both the 
opportunity cost of capital and a unique risk factor for each technology (Briera and Lefèvre, in prep.).
The techno-economic parameters for each technology are calibrated using sectoral technology models or in-
formation from the literature (IEA, 2020b, IRENA, 2020) For immature technologies, costs decrease over time 
through a global learning process modeled by learning curves (Neij, 2008). Learning curves link production 
costs to cumulative production through a learning coefficient.  In the case of the electricity sector, the cost of 
electricity production is expected to decrease with cumulative installed capacity for a given technology.  In the 
base year of the model (2014), all regions in the IMACLIM-R  model start with different cost assumptions. In 
addition, minimum costs are defined in  each region:  these are the lowest costs that can be achieved through a 
learning process.    As a result, the learning process is global (each region benefits from the capacity additions of 
the others), but the initial and asymptotic costs remain differentiated. This decision is justified by two findings:  
1) wind turbines and PV modules are traded as   commodities.
2) capital costs varies by location due to national or regional circumstances, such as labor costs.  With CINVk,j (t) 
the current investment cost for technology j in region k at time t, CINV_refk,j ,  the  reference investment  cost  (at  
calibration  year),  A_CINV_refk,j the floor cost, LRj  the learning rate, Cum Inv refk,j  the cumulative investment of 
technology   j in region k in the calibration year, Cum Invk,j (t) the cumulative investment at time t: 

As the cost of renewable energy has declined recently, the CAPEX and OPEX curves    for wind and solar (including 
CSP) are driven to adjust to recently observed levels in the region. This means that the decline in renewable 
energy costs between 2014 and 2019 is monitored and not driven by the learning curve.

Carbon Capture and Storage.  The electricity nexus of IMACLIM-R includes both   fossil fuel carbon capture and 
storage (CCS) and bioenergy with CCS (BECCS) technolo- gies. In the current version of the model, CCS for power 
generation technologies does not enter the R&D phase until a threshold for the current regional carbon price is 
reached        to prevent early CCS deployment despite low or negative profitability.  The market share   of each CCS 
technology is limited by an S-shaped technology development function.  In   the case of BECCS, an additional 
biomass supply curve limits the deployment of this technology  (Hoogwijk  et al.,  2009).   In  the  current  struc-
ture  of  IMACLIM-R,  BECCS are the only source of negative emissions. Therefore, the pace of BECCS deployment 
is critical in very low-carbon/net-zero mitigation pathways. Fossil fuel technologies cannot be retrofitted with 
CCS, so new power plants must be built to capture and store carbon. Retrofits and early decomissionning will be 
added in future versions of the model.

Capital inertia. In the electricity sector, the capital stock is path-dependent, as each investment at time t adds 
to the capacity built in previous periods. The variable Cap vintagek,j (t) tracks annual capacity additions for tech-
nology j in region k. Thus, the depreciated capital at time t is the sum of the generations of capital that reach the 
end       of their lives from time t − lifetime to t − 1 (Cap depk,j (t) in Equation 3).  Adding the  new investments 
to the depreciated capital stock at time t gives the functioning capital  at time t before the new capacity addition 
from the investments.
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(3)Cap depk,j(t) =

t−1∑
i=t−lifetimek

Cap vintagek,j(i)

(4)Capk,j(t) = Cap depk,j(t) + Invk,j(t)

At each time step of the model, the average characteristics of installed production ca-
pacity are the weighted average of the technical characteristics of the different generations
of power plants still in operation. The inertia of power plant capacity is represented by
the tracking of capital across generations along with their technical characteristics.

Each year, the production units that reach the end of their life are decommissioned.
If we add the annual capacity additions i.e. investments, we get a net installed capacity.

The new generation of capital capacity and its technical characteristics are determined
by the investment decisions described in the following sections.

3 A challenge to incorporate demand-side and renewable
energy supply constraints in a compact electricity module

Final energy demand in IMACLIM-R. In IMACLIM-R, final energy demand re-
sults from three (meta) sectors: productive sectors, transport sectors, and the residential
sector. For the transport and the residential sectors, which benefit from detailed bottom-
up representations, the use of electricity depends on explicit technology choices, e.g. the
purchase of electric cars instead of internal combustion engine cars. In the case of pro-
ductive sectors (agriculture, industry, construction, composite goods), electricity demand
is determined by input-output coefficients.

The load duration curve. It is common to combine the daily load curves over the 365
days of the year into a single curve, the load duration curve. It summarizes information
about the size and degree of utilization of the capacity needed to meet demand throughout
the year. The load duration curve is obtained by plotting hourly load values over the year
against the duration for which that load was requested. The highest recorded load over
the 8760 hours of the year is called the peak load. The minimum power supplied over
the year is the base load. Thus, the balance between electricity demand and supply can
be resolved annually using the load duration curve. It allows not relying on an external
high-resolution energy model, but it also has its pitfalls, especially in terms of information
losses in intraday processes such as short-term storage. These limitations are overcome
by integrating additional bottom-up data into the nexus (see subsection ”The Residual
Load Duration Curve and the challenges to VRE integration”).

The shape of the load duration curve is specific to each region, as it is directly related
to the temporal variability of electricity demand. This variability depends in particular
on the seasonal climate variations in the region For numerical simplicity, the regional load
duration curves were approximated by segmented linear functions:

• the possible annual loads (measured in hours) are divided into seven intervals with
the following boundaries: [0, 730, 2190, 3650, 5110, 6570, 8030, 8760];

• the maximum load lasts 730 hours (peak load);

• the minimum load lasts 8760 hours (base load);

4
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Figure 1: Load duration curve approximation in IMACLIM-R’s electricity module

• the load level for the other periods of time is calculated by dividing the interval
between baseload and peak load into six equal segments i.e. 760 hours of baseload,
760 hours of peak load, and five segments in between of 1460 hours each.

This results in the shape of the load duration curve in Figure 1: a peak load band, 5
inner load bands, and a base load band. With this simplified scheme, the load duration
curve of each region can be fully characterized by two values: peak load and baseload.
The annual electricity produced is given by the area under the curve in Figure 11.

To calibrate and reconfigure the load duration curve for each time period, we assume
that the ratio of peak load to baseload, (written bp ratiok) remains constant and equal to a
value supplied by the POLES model.2 The load duration curve approximation associated
with a quantity Q eleck of electricity produced in the region k, is obtained by solving
the equation system, formed by the ratio constancy equation and the constraint equation
on the quantity of energy produced, as described in equations 5 and 6 where basek and
peakk are the loads required during the base or peak periods respectively.

(5)
basek(t)

peakk(t)
= bp ratiok

(6)
Q eleck(t) = 730 ∗ peakk(t) + 8760 ∗ basek(t)

+ (8030 + 6570 + 5110 + 3650 + 2190) ∗ peakk(t)− basek(t)

6

The shape of the load duration curve provides information about the optimal amount
of electricity generation capacity needed to meet peak demand and when that capacity
should be used during the year. To go further, we need to consider the impact of renew-
ables on the load curve. Residual load duration curves (RLDCs) describe the physical
and temporal constraints on electricity demand and supply, including the challenges of
integrating variable renewables into power systems.

1In this figure, the ”real load duration curve” corresponds to a hypothetical example to illustrate how
load duration curves are approximated. The reader should keep in mind that there is no such ”real load
duration curve” in IMACLIM-R, only an annual electricity demand from which an approximated load
curve is derived

2In principle, this ratio could vary in an exogenous or endogenous manner to integrate, for example, its
modification under the effect of policies of demand side management. These policies are not implemented
in the current version of the model.
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The residual load duration curve and the challenges to VRE integration. Variable renewable energy sources 
(VRE) such as photovoltaics or wind are inherently non- dispatchable.  Therefore, their deployment affects the 
operation of power systems (Hirth   et al., 2015). Renewable generation increases the need for flexibility in the 
power system, including dispatchable power to meet peak demand. Indeed, the capacity credit of VRE  (the 
ability to contribute to meeting peak demand in a power system) is low and decreases as the share of VRE in the 
mix  increases.
In order for the technologies to compete on an equal footing (dispatchable vs. vari- able), we must first adjust 
the LCOE of VRE to account for its low capacity credit, i.e., the contribution of variable renewables to meeting 
peak demand. In other words, the ”hidden costs” associated with VRE generation are not included in VRE’s LCOE. 
There- fore, we add to VRE’s LCOE what is called ”integration costs” to calculate VRE’s system LCOE, which covers 
the full economic cost of solar and wind generation. Integration costs measure the costs imposed on the power 
system to maintain the marginal value of renew- able electricity.  This includes investments in storage facilities, 
grid costs, backup costs,    etc. Typically, integration costs are divided into three categories, each related to the 
basic characteristics of renewable energy: uncertainty, locational constraints, and variability.
•	 Balancing costs (uncertainty). They gather actions taken to face VRE output un- predictability,  for instance,  

the cost of intraday trading.  Balancing costs tend to   zero in absence of forecasting errors on VRE output.
•	 Grid-related costs (locational specificity).  Grid-related costs measure the reduction in market value due to 

the specific generation location of power plants.
•	 Profile costs (variability). Profile costs reflect the marginal value of electricity at different moments in time. As 

the demand varies through time, profile costs measure the cost of matching this demand with VRE storage 
devices or conventional backup power.

However, estimating value ranges for profile costs and other integration costs is not straightforward. With 20% 
renewables in the electricity mix, reported values for integra- tion costs range from €0/MWh to €49.2/MWh 
(Heptonstall & Gross, 2021), reflecting a high degree of uncertainty in integration cost estimates. Indeed, the 
extent of the loss in  the market value of renewable electricity depends on the (in)flexibility of the rest of the 
electricity system. The more flexible the system, the lower the integration costs. Con- sequently, estimates of 
integration costs depend on the underlying energy model and its techno-economic assumptions. The alternative 
to estimating integration costs would have been to rely on a much more detailed, soft-linked energy system op-
timization model that includes explicit flexibility solutions for VRE deployment.  In this way, we would have lost 
all the benefits of an embedded power module. Therefore, we chose a synthetic way to account for integration 
costs through an integration cost markup for PV and wind.  The   PV (or wind) markup, expressed in $ per MWh of 
PV (or wind), is linear with respect to   the fraction of wind and PV gross generation and sums to the PV (or wind) 
electricity generation cost. The parameters a,b, g and d are calibrated to reflect typical values of integration 
costs (in $ per MWh of VRE  generation).

The residual load duration curve and the challenges to VRE integration. Vari-
able renewable energy sources (VRE) such as photovoltaics or wind are inherently non-
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as the share of VRE in the mix increases.

In order for the technologies to compete on an equal footing (dispatchable vs. vari-
able), we must first adjust the LCOE of VRE to account for its low capacity credit, i.e.,
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includes explicit flexibility solutions for VRE deployment. In this way, we would have lost
all the benefits of an embedded power module. Therefore, we chose a synthetic way to
account for integration costs through an integration cost markup for PV and wind. The
PV (or wind) markup, expressed in $ per MWh of PV (or wind), is linear with respect to
the fraction of wind and PV gross generation and sums to the PV (or wind) electricity
generation cost. The parameters α, β, γ, and δ are calibrated to reflect typical values of
integration costs (in $ per MWh of VRE generation).
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We still lack robust data to calibrate the integration cost markup parameter and rely
on the few existing studies. These parameters will be updated as comprehensive, peer-
reviewed studies on integration costs are published. The sensitivity analysis in the figure
[forthcoming: sensibility analysis on the markup parameters] shows that the integration
cost markup parameter is of great importance for VRE deployment.

The VRE markup is the counterpart of the cost of variable renewables in the rest of
the power system. This is captured by a distortion of the residual load duration curve
as the share of renewables in the mix increases: the higher the share of renewables, the
steeper the residual load duration curve (Ueckerdt et al., 2015). Thus, following the
ADVANCE ”Variable Renewable Energy integration module project (Ueckerdt et al.,
2017), the residual peak load becomes a function of VRE gross generation:

(10)peak resk(t) = f(Gross wind sharek(t), Gross pv sharek(t))

with the f a third-order polynom (see Annex for the polynomial coefficients).
This way, base res and peak res are now determined by Equations 10 and 11: Equa-

tion 5 no longer holds. However, Equations 10 and 11 do not prevent negative residual
baseload. Thus, Equation 11 includes the possibility to adapt if solving the system of
equations 10 and 11 yields negative residual baseload. If for nb steps = 6 (starting case),
the residual baseload is negative, the 8760h load band is removed, and the system of
equations 10 and 11 is solved again with one less load band, as shown on Figure 2. It
implies that the conventionnal capacity does not provide a minimum power throughout
the year. This way, the residual load curve is always positive and conserves its proper-
ties. A version of the residual load duration curve design with a miminum load band
(Ueckerdt et al., 2015) (continuous supply from dispatchable plants throughout the year)
is currently under developement.

(11)
Q elec resk(t) = peak resk(t) ∗ 730 + base resk(t) ∗ lower load bandsk

+
peak resk(t)− base resk(t)

nb stepsk
∗ (

∑
inner load bandsk)

The residual peak load and the net share (without curtailment) of non-VRE generation
in total demand depend on the gross VRE generation. Additionally, the ADVANCE
project module was also used to calibrate 1) VRE curtailment and storage losses 2)
storage capacity and output as a function of the share of solar PV and wind energy in
the mix, the same way the residual peak load does (see equation 10).
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(14)stor outputk(t) = m(Gross wind sharek(t), Gross pv sharek(t))
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Figure 2: Illustrative RLDC approximation for 20% and 40% net VRE share

In the end, this residual load duration curve design allows representing VRE integra-
tion challenges in a compact electricity module such as IMACLIM-R’s by relying on the
highly resolved Dispatch and Investment Model for Electricity Storage (DIMES) outputs.
Basically, it allows the electricity sector of IMACLIM-R to include the impact of variable
renewable energy on the electricity system in a simple, yet robust manner. It captures
key mechanisms behind the variable renewable energy penetration challenge and yields
consistent projections (see section 7).

Storage. For now, only short-term storage is represented in the electricity nexus: stor-
age capacity, outputs and losses are extracted from the DIMES output (see equation
13 and 14) and DIMES only optimizes short-term storage. Thus, seasonal (long-term)
storage is not included yet in the electricity nexus. An explicit representation of storage
capacity needs and ouputs is currently under developement.

Grid and Transmissions and Distribution Losses. Investments in grid infrastruc-
tures are not modeled in the electricity module of IMACLIM-R. The extra needs related
to VRE deployment are included in the VRE markup. Transmissions and Distribution
(T&D) losses are included in the form of an intra electricity sector input-output coefficient,
expressing T&D losses as a share of total electricity output.

Modeling investment and dispatch
decisions

4 Optimal planning of investments under imperfect fore-
sight

With the compact representation of power generation technologies and the (residual)
load duration curve presented above, we have the necessary technical details to model
investment decisions in the power sector on an annual basis. The optimal capacity to meet
expected demand over an intermediate time horizon (t+10 by default) is then compared
to existing capacity to derive the annual investment plan. The final investment decision
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Modeling investment and dispatch decisions

IV - 	 Optimal planning of investments under imperfect foresight

With the compact  representation  of  power  generation  technologies  and  the  (residual) load duration curve 
presented above, we have the necessary technical details to model investment decisions in the power sector on 
an annual basis. The optimal capacity to meet expected demand over an intermediate time horizon (t+10 by de-
fault) is then compared    to existing capacity to derive the annual investment plan. The final investment decision
is decomposed into five sequential steps:

1.	 Formulating expectations about future demand and future fuel prices;
2.	 Choosing wind turbine and solar PV electricity production capacity;
3.	 Choosing hydroelectric production capacity;
4.	 Projecting the optimal conventional (non-renewable) production capacity to meet domestic demand;
5.	 Deciding on the annual investment necessary to move the existing production ca- pacity towards the opti-

mal capacity that has just been  calculated.
The optimal planning procedure relies on a modified multinonial logit structure (Clarke & Edmonds, 1993), 
which is an alternative to forward-looking cost optimization in simula- tion and recursive dynamic Integrated 
Assessment Models (Joint Global Change Research Institute, 2022). The modified multinomial logit structure 
acknowledges for the fact that determining factors in the investment decision are not modeled, such as indivi-
dual pref- erences (e.g for nuclear power) and local variations in electricity generation conditions.  The separate 
treatment of VRE and hydropower is justified by the special characteristics    of these energy sources. A more 
detailed explanation of these peculiarities is provided below.

Projected  demand,  fuel  prices  and  carbon  tax.  The optimal installed capacity and level of annual invest-
ments are determined using backward-looking expectations of electricity demand growth and future fossil fuels 
prices over the coming ten years.
The projected electricity demand for the period t+10 in region k, written Q_eleck

anticip(t)
(in MW h), is computed assuming an arithmetic growth of future demand, with Q_eleck
the final electricity demand of period t − 1 :

is decomposed into five sequential steps:

1. Formulating expectations about future demand and future fuel prices;

2. Choosing wind turbine and solar PV electricity production capacity;

3. Choosing hydroelectric production capacity;

4. Projecting the optimal conventional (non-renewable) production capacity to meet
domestic demand;

5. Deciding on the annual investment necessary to move the existing production ca-
pacity towards the optimal capacity that has just been calculated

The optimal planning procedure relies on a modified multinonial logit structure (Clarke
& Edmonds, 1993), which is an alternative to forward-looking cost optimization in simula-
tion and recursive dynamic Integrated Assessment Models (Joint Global Change Research
Institute, 2022). The modified multinomial logit structure acknowledges for the fact that
determining factors in the investment decision are not modeled, such as individual pref-
erences (e.g for nuclear power) and local variations in electricity generation conditions.
The separate treatment of VRE and hydropower is justified by the special characteristics
of these energy sources. A more detailed explanation of these peculiarities is provided
below.

Projected demand, fuel prices and carbon tax. The optimal installed capacity
and level of annual investments are determined using backward-looking expectations of
electricity demand growth and future fossil fuels prices over the coming ten years.

The projected electricity demand for the period t+10 in region k, writtenQ elecanticipk (t)
(in MWh), is computed assuming an arithmetic growth of future demand, with Q eleck
the final electricity demand of period t− 1 :

(15)Q elecanticipk (t) = Q eleck(t) + (Q eleck(t)−Q eleck(t− 1)) ∗ 10

Expected electricity demand addressed to conventional (non-renewable) power plants
is associated with an anticipated residual load duration curve which is determined using
the results from the resolution of the equation system 10-11.

Current fossil fuel prices are taken as anticipated future prices. Thus, we assume that,
given the uncertainty of short-term fluctuations in fossil fuel prices, electricity producers
consider current prices to be the best available information Regarding the carbon tax
on fossil fuels, the IMACLIM-R rationale allows for different beliefs regarding climate
policies. By default, the trajectory of the carbon tax is not known. The current carbon
tax is projected over the lifetime of the power generation project to calculate its LCOE.
Therefore, the current carbon tax is the main climate policy tool. However, it is possible
to allow for :

• alternative regimes of expectations, e.g. perfect foresight on the carbon tax trajec-
tory

• divergent beliefs among actors about the future carbon tax, depending on the level
of confidence in climate policy. These divergent beliefs could even be endogenized
in future model developments
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Determining investments in non-hydroelectric renewable production capacity. The investment decision 
in IMACLIM-R for both renewable and non-renewable technolo- gies is based on a modified multinomial logit 
(or modified logit).   It also accounts for       the fact that the cheapest option does not displace more expensive 
technologies in the electricity market when there is uncertainty, incomplete information, energy security con- 
cerns, etc. The modified multinomial  logit  choice  function  takes  as  input  a  vector  of LCOE (referred to as the 
choice indicator in the logit framework) and returns a vector of market shares for the corresponding alternatives.  
The random term is assumed to follow   a Weibull distribution such that the market share Sk,i for technology i in 
region k is given by equation 16: With g the logit exponent, LCOEi the LCOE, ak,i the share weight of technology 
i, and N the number of technological options. We also assume that the central planner in the electricity market 
selects the market share for a medium-term horizon (ten years) based on the current costs of the technologies.

Determining investments in non-hydroelectric renewable production capacity.
The investment decision in IMACLIM-R for both renewable and non-renewable technolo-
gies is based on a modified multinomial logit (or modified logit). It also accounts for
the fact that the cheapest option does not displace more expensive technologies in the
electricity market when there is uncertainty, incomplete information, energy security con-
cerns, etc. The modified multinomial logit choice function takes as input a vector of
LCOE (referred to as the choice indicator in the logit framework) and returns a vector of
market shares for the corresponding alternatives. The random term is assumed to follow
a Weibull distribution such that the market share Sk,i for technology i in region k is given
by equation 16: With γ the logit exponent, LCOEi the LCOE, αk,i the share weight of
technology i, and N the number of technological options. We also assume that the central
planner in the electricity market selects the market share for a medium-term horizon (ten
years) based on the current costs of the technologies.

(16)Sk,i(t) =
αk, ∗ LCOEγ

k,i(t)∑N
j=1 αk,j ∗ LCOEγ

k,j(t)

In the electricity sector of IMACLIM-R, a first logit nest determines the share of vari-
able renewables (wind and solar PV) and the aggregate share of non-variable renewables
in total electricity generation. The market share for each non-variable renewable energy is
determined by a second logit nest. The choice indicator for the aggregated dispatchable
plants’ share is the lowest LCOE on baseload3. The weight shares αk,i are calibrated
to reproduce 2018 observed market shares for the four VRE technologies (wind onshore,
wind offshore, central PV and rooftop PV) and progress thereafter towards equal weight-
ing. Thus, we assume that all non-LCOE factors driving VRE deployment (financial
support like feed-in tariffs, national preferences etc.) are declining, electricity generation
technologies ending by competing solely based on their economic costs.

The sum of the VRE market shares yields the share of net VRE generation in the
total expected electricity demand in region k. The remaining (”residual”) demand must
be met with dispatchable power plants, including hydropower, CSP and conventional
thermal power plant.

As shown in Figure 3, the first logit nest determines the global share of variable
renewables from which the residual electricity demand for dispatchable capacity is derived.
Once the residual load duration curve is approximated, dispatchable technologies compete
for each load band in the second logit nest.

3Technologies with limited potential due to resource endowment constraints (hydro, CSP) or social
acceptance (nuclear) were excluded from the non-variable renewables choice indicator.
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driving  VRE  deployment  (financial support like feed-in tariffs, national preferences etc.) are declining, electri-
city generation technologies ending by competing solely based on their economic costs.
The sum of the VRE market shares yields the share of net VRE generation in the       total expected electricity de-
mand in region k.  The remaining (”residual”) demand must    be met with dispatchable power plants, including 
hydropower, CSP and  conventional thermal power plant.
As shown in Figure 3, the first logit nest determines the global share of variable renewables from which the 
residual electricity demand for dispatchable capacity is derived. Once the residual load duration curve is approxi-
mated, dispatchable technologies compete for each load band in the second logit nest.

3
Technologies with limited potential due to resource endowment constraints (hydro, CSP) or social acceptance (nuclear) were excluded from 
the non-variable renewables choice indicator.
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Investment in hydroelectricity Hydropower is treated in a special way because in-
vestment in this technology is contrained by the regional physical potential. In this mod-
ule, we make no distinction between run-of-river and conventional (dammed) hydropower
plants. Therefore, investments in hydropower plants in this module are exogenous and
comes from the POLES model (Keramidas, K. et al., 2018).

Conventional installed production capacity Once the optimal share of VRE gener-
ation is know, the residual load duration curve is derived following the procedure described
in the ”Residual load duration curve” section.

Planning the conventional installed production capacity at minimal cost for the period
t+10 means determining, for each discrete segment of annual utilization, the cheapest
production mix. Assessing the competitiveness of a technology to satisfy a fixed annual
utilization period is done by calculating the discounted total production cost of a kW
over this utilization period. The corresponding variable, written LCOEH , is computed
for each load band of widthH. In other words, the module computes for each conventional
technology the levelized cost of producing 1 kW of power for H hours over the plant’s
lifetime, H corresponding to one of the seven load bands width. When H equals full load
hour (8760h), then this metric corresponds to the standard LCOE.

LCOEH includes:

• the (annualized) capital cost or construction cost

• the fixed total discounted operation and maintenance costs per kWh installed

• the variable total discounted operation and maintenance costs per kWh produced

• the total discounted fuel costs, calculated using the final price scenarios of the
anticipated fossil energies.

• the availability factor, which incorporates planned outages and maintenance
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Investment in hydroelectricity Hydropower is treated in a special way because in- vestment in this technology 
is contrained by the regional physical potential. In this mod- ule, we make no distinction between run-of-river and 
conventional (dammed) hydropower plants. Therefore, investments in hydropower plants in this module are exoge-
nous and comes from the POLES model (Keramidas, K. et al.,  2018).

Conventional installed production capacity Once the optimal share of VRE gener- ation is know, the residual load 
duration curve is derived following the procedure described in the ”Residual load duration curve” section.
Planning the conventional installed production capacity at minimal cost for the period t+10 means determining, 
for each discrete segment of annual utilization, the cheapest production mix. Assessing the competitiveness of a 
technology to satisfy a fixed annual utilization period is done by calculating the discounted total production cost of 
a kW      over  this  utilization  period.  The  corresponding  variable,  written  LCOEH ,  is  computed for each load band 
of width H. In other words, the module computes for each conventional technology the levelized cost of producing 
1 kW of power for H hours over the plant’s lifetime, H corresponding to one of the seven load bands width. When H 
equals full load hour (8760h), then this metric corresponds to the standard LCOE.
LCOEH includes:

•	 the (annualized) capital cost or construction cost
•	 the fixed total discounted operation and maintenance costs per kWh installed
•	 the variable total discounted operation and maintenance costs per kWh produced
•	 the total discounted fuel costs, calculated using the final price scenarios of the anticipated fossil energies.
•	 the availability factor, which incorporates planned outages and maintenance
•	 the cost of capital which serves as a proxy for the discount factor

Thus, the market share for each load band is derived by a second modified multino- mial logit nest where only 
dispatchable power plants compete. Hydropower generation is removed from the lower bands of the residual load 
curve because hydropower investments are  autonomous and hydropower is dispatched first (i.e in the lower load 
bands) due to  its  very low variable cost. The module can determine the required installed capacity of conventional 
power technologies available for investment to meet the expected electricity demand of t+10 by summing the 
desired capacity for each load band.

Final investment: minimizing the distance between the optimal production capacity and the installed capacity 
The procedure described in the previous sub- section allows us to define at each period t the optimal anticipated produc-
tion capacity    for the period t + 10. Between t and t + 10 an investment plan determines the yearly capacity additions 
needed to reach the optimal t + 10 capacity.
In the present version of the model, it is not possible to either remove certain produc- tion capacity before the end of 
their lifetime or modify the technologies embodied in the installed plants, i.e. there is no early decommissioning or 
retrofitting. We thus treat the inertia of the equipment and technologies as if they are utilized for their full lifetime.
Moreover, investments in the electricity sector are constrained by the availability of capital, like any other sector of IMA-
CLIM-R. The composition of the actual investment made is obtained by solving the program that minimizes the distance 
between optimal investment and available capital. Renewable investment needs are prioritized over conven- tionnal 
capacity additions if the available capital cannot satisfy both. To avoid oversizing capacity, an additional constraint is 
added to the investment decision in the form of max- imum residual peak load coverage.  The residual peak load cove-
rage serves as a measure   of the grid reliability.
If the existing dispatchable capacity covers the residual peak load beyond a cover- age  target, the final investment is re-
duced with regard to the investment determined by matching the residual load duration curve with the optimal market 
shares from the mod- ified multinomial logit nest. This prevents the electricity module from overinvesting in conven-
tional capacity even if the current capacity is sufficient to meet the residual de- mand. Such a situation would occur in 
the case of a sudden fuel switch, for example when coal-fired generation temporarily becomes cheaper than gas-fired 
generation, resulting in investment in both coal and gas capacity to meet baseload.  Note that the final investment is 
always a non-negative fraction of the optimal investment, i.e ymin > 0. Variable renewables and CCS are excluded from 
the investment constraint.



Figure 4: Constraint on investment - residual peak load coverage

These investments create a new generation of capital that marginally changes the
composition of installed power capacity for the next static equilibrium. The figure 3
summarizes the investment process of the power sector of IMACLIM-R, from the ideal
power mix at time t+ 10 to the annual capacity additions. Based on this newly installed
generation capacity and the depreciated capital, the current electricity demand can be
met.

5 Dispatch decision in a compact electricity module

Once the characteristics of the installed operating capacity for the current period of the
model are known, the equilibrium between electricity demand and supply can be found.
Since the model solves the equilibrium in the electricity market annually, the dispatch
decision also relies on (residual) load duration curves. Renewable electricity generation
at time t is subtracted from total demand because it is not dispatchable. The use of
non-renewable power generation capacity to meet residual demand is done according to
the merit order of technologies. In practice, this means that for each load band (starting
with the lower band), the technology with the lowest variable production cost is used
until:

• the power called for exceeds the available production capacity for this technology and
the next cheapest installed production capacity is exploited to obtain the additional
power or,

• the available production capacity of this technology exceed the power demanded for
this load duration and the remaining available production capacity will be used to
answer demand associated with the load duration that is immediately inferior.
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V.	 Dispatch decision in a compact electricity module

Once the characteristics of the installed operating capacity for the current period of the model are known, the 
equilibrium between electricity demand and supply can be found. Since the model solves the equilibrium in 
the electricity market annually, the dispatch decision also relies on (residual) load duration curves.  Renewable 
electricity generation    at time t is subtracted from total demand because it is not dispatchable. The use of 
non-renewable power generation capacity to meet residual demand is done according to  the merit order of 
technologies. In practice, this means that for each load band (starting with the lower band),  the  technology  with  
the  lowest  variable  production  cost  is  used until:

•	 the power called for exceeds the available production capacity for this technology and the next cheapest 
installed production capacity is exploited to obtain the additional power or,

•	 the available production capacity of this technology exceed the power demanded for this load duration 
and the remaining available production capacity will be used to answer demand associated with the load 
duration that is immediately inferior.

Figure 5: Installed and available capacity during dispatch

This production cost minimization program allows associating an average annual uti-
lization period (in hours) in each region k and for each technology. For conventional
technologies, the utilization rate (the average functioning time of the installed capacity
over the 8760 hours of the year) cannot exceed the availability factor. When this occurs
for some technologies (e.g. coal units would operate 100% of the time according to the
dispatch procedure, while their availability factor is 85%), we introduce an available ca-
pacity variable to account for outages and maintenance, and perform the dispatch again
as shown on Figure 5.

Understanding the role of the electricity
sector in a hybrid integrated assessment
model: macroeconomic linkage and long
term projections

6 Linkage between the electricity sector and the macroeco-
nomic core of IMACLIM-R

The link between the electricity module and the macroeconomic core of IMACLIM-R runs
mainly through electricity demand, electricity prices, and fossil fuel prices. Electricity
demand and fossil fuel prices are inputs to the electricity nexus: this was discussed in
Section 4. The price of electricity is the most important output of the electricity nexus,
as it is determined both by the share of fossil fuels in electricity generation (via the
input-output coefficients IC), by the investment required to provide electricity and the
available power generation capacity. The bottom-up information from the nexus (input-
output coefficients, installed capacity per technology) are the building blocks for the
electricity sector supply curve in the IMACLIM-R macroeconomic equilibrium. The input-
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This production cost minimization program allows associating an average annual uti- lization period (in hours) 
in each region k and for each technology. For conventional technologies, the utilization rate (the average functio-
ning time of the installed capacity   over the 8760 hours of the year) cannot exceed the availability factor.  When 
this occurs    for some technologies (e.g. coal units would operate 100% of the time according to the dispatch 
procedure, while their availability factor is 85%), we introduce an available ca- pacity variable to account for 
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VI - 	 Linkage between the electricity sector and the macroeco- nomic core of  IMACLIM-R

The link between the electricity module and the macroeconomic core of IMACLIM-R runs mainly through elec-
tricity demand, electricity prices, and fossil fuel prices. Electricity demand and fossil fuel prices are inputs to the 
electricity nexus: this was discussed in Section 4.  The price of electricity is the most important output of the elec-
tricity nexus,      as it is determined both by the share of fossil fuels in electricity generation (via the input-output 
coefficients IC), by the investment required to provide electricity and the available power generation capacity. 
The bottom-up information from the nexus (input- output coefficients, installed capacity per technology) are the 
building blocks for the electricity sector supply curve in the IMACLIM-R macroeconomic equilibrium. The input-
output coefficients IC encapsulate the merit order and dispatch decision from the dynamic module as described 
above. The final supply curve is used only in the static equilibrium. The shape of the supply curve determines 
the market clearing conditions and hence the final electricity price. The electricity sector  supply  curve  (more  
precisely,  the  inverse supply curve) can be interpreted as the sum of marginal production costs (Cm) plus a 
sector-specific profit markup (π), like any sector of IMACLIM-R Unless otherwise stated, the electricity sector is 
assumed to be perfectly competitive.  Thus,  the markup covers    only the costs of investment and capital depre-
ciation. The markup is set prior to market clearing. It is calibrated so that, at current intermediary and final prices,  
the sum of  average electricity generation costs (including investment costs) and the profit markup equals the 
regional market price of electricity. Thus, the marginal cost of electricity generation in region k is given by:

output coefficients IC encapsulate the merit order and dispatch decision from the dynamic
module as described above. The final supply curve is used only in the static equilibrium.
The shape of the supply curve determines the market clearing conditions and hence the
final electricity price. The electricity sector supply curve (more precisely, the inverse
supply curve) can be interpreted as the sum of marginal production costs (Cm) plus a
sector-specific profit markup (π), like any sector of IMACLIM-R Unless otherwise stated,
the electricity sector is assumed to be perfectly competitive. Thus, the markup covers
only the costs of investment and capital depreciation. The markup is set prior to market
clearing. It is calibrated so that, at current intermediary and final prices, the sum of
average electricity generation costs (including investment costs) and the profit markup
equals the regional market price of electricity. Thus, the marginal cost of electricity
generation in region k is given by:

(17)Cmk =
∑
j

pICj,k ∗ ICj,k + (Ωk ∗ wk) ∗ lk ∗ (1 + taxwk )

and the electricity price is given by :

(18)pk =
∑
j

pICj,k ∗ ICj,k + (Ωk ∗ wk) ∗ lk ∗ (1 + taxwk ) + πk ∗ pk

• The technical unitary coefficients of production which characterize the electricity
sector (quantities of different fuels required to produce a unit of electricity) are
determined for coal, gas and liquid fuels (tech = [coal, gas, et]) by equation 19.

(19)ICtech,elec,k =

prod elec technotech,k
rho electech,k

Q elec

• The marginal cost is increasing with the level of electricity generation through the
utilization rate Ωk = Qk

Capk
. Static decreasing returns are assumed in every sector

of IMACLIM-R and are associated with lower labor productivity. The electricity
sector can not provide more than its annual maximum potential production Capk.
Capk evolves with electrical power capacity additions.

The marginal cost of electricity generation is the aggregate supply curve of the elec-
tricity sector used in static equilibrium to balance supply and demand. It incorporates
information from investment and dispatch decisions through three elements: the profit
markup to cover investment costs, input-output coefficients that reflect dispatch decisions,
and potential output as a function of available capacity.

Figure 6 summarises the link between macroeconomic, static equilibriums and the two
electricity submodules, investment and dispatch.
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The marginal cost of electricity generation is the aggregate supply curve of the elec- tricity sector used in static 
equilibrium to balance supply and demand. It incorporates information from investment and dispatch decisions 
through three elements: the profit markup to cover investment costs, input-output coefficients that reflect dis-
patch decisions, and potential output as a function of available  capacity.
Figure 6 summarises the link between macroeconomic, static equilibriums and the two electricity submodules, 
investment and dispatch.

Figure 6: Summary of the link between macroeconomic static equilibrium and the dy-
namic submodules of the electricity nexus

7 Long-term projections for regional power systems

In this section, we present the main electricity nexus outputs from 2015 to 2100 in two
scenarios : a Nationally Determined Contribution scenario, following COMMIT project
results (van Soest et al., 2021) and a 2°C scenario (1000 GT CO2 budget, 2020-2100). To
limit global warming at +2°C by the end of the century, a carbon tax is implemented,
starting at 50$ per ton of CO2 emission in 2020 and reaching 1500$ per ton in 2100.

Figure 7: World electricity generation by source, NDC (left) and 2°C (right) scenarios
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Figure 8: World electricity market share by source, NDC (left) and 2°C (right) scenarios

Figure 9: World installed capacity by source, NDC (left) and 2°C (right) scenarios
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 Figure 9: 
World installed capacity by source, NDC (left) and 2°C (right)  scenarios
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Figure 10: World electricity market share by source, NDC scenario

Figure 11: World electricity market share by source, 2°C scenario
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 Figure 11: 
World electricity market share by source, 2°C  scenario
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ANNEX

8 Annex

8.1 Technical and economic assumptions for electricity generation

Table 1: CAPEX, in thousand 2010$ per MW

PFC PSS ICG CGS SUB USC UCS GGT GGS GGC OCT OGC HYD NUC CSP WND WNO CPV RPV BIGCC BIGCCS

USA 1948.0 4731 2412 5195 1670.0 2134.0 4916 463.8 2783 927.6 650 991.7 2505 4638 6030 1766 5470 2676 3315 3457 6240
CAN 1948.0 4731 2412 5195 1670.0 2134.0 4916 463.8 2783 927.6 650 991.7 2505 4638 6030 2266 5470 2676 3315 3457 6240
EUR 1855.0 4638 2319 5102 1577.0 2041.0 4824 463.8 2783 927.6 650 991.7 2458 5566 5241 1865 4879 2198 2672 3457 6240
OECD 2226.0 5009 2690 5473 1948.0 2412.0 5195 463.8 2876 1020.0 650 991.7 2226 3896 6030 2708 5264 2789 2640 3457 6240
FSU 1855.0 4638 2319 5102 1577.0 2041.0 4824 417.4 2597 742.1 650 991.7 2458 3525 5241 1865 6163 2198 2672 3457 6240

CHN 649.3 3432 1020 3803 556.6 742.1 3525 324.7 2375 519.5 650 991.7 1484 2412 4545 1252 3852 1635 1541 3457 6240

IND 1113.0 3896 1484 4267 927.6 1299.0 4082 371.0 2505 649.3 650 991.7 1855 2597 5287 1316 4031 1769 1541 3457 6240
BRA 1484.0 4267 1855 4638 1206.0 1670.0 4453 371.0 2505 649.3 650 991.7 1948 3710 4963 2061 5932 3623 3438 3457 6240
MDE 1484.0 4267 1855 4638 1206.0 1484.0 4267 417.4 2597 742.1 650 991.7 1994 3247 4870 1770 5881 2157 3537 3457 6240
AFR 1484.0 4267 2041 4824 1206.0 1762.0 4545 371.0 2505 649.3 650 991.7 1948 3710 4684 1930 5701 2543 3496 3457 6240

RAS 649.3 3432 1020 3803 556.6 742.1 3525 324.7 2375 519.5 650 991.7 1484 2412 4545 1252 3852 1635 1541 3457 6240
RAL 1484.0 4267 1855 4638 1206.0 1670.0 4453 371.0 2505 649.3 650 991.7 1948 3710 4963 2061 5932 2617 2638 3457 6240

Sources: For renewables, when data for 2014 is available: IRENA, 2020. When it is not, the 2019 data is used to go backwards on the learning curve, assuming the relationship between the
installed capacity and the investment costs hold for the years 2014-2019. For other technologies excepted oil and biomass: IEA, 2021. For biomass: Tidball et al., 2010. For oil: Lazard, 2016.

Table 2: Fixed O&M, in thousand 2010$ per MW

PFC PSS ICG CGS SUB USC UCS GGT GGS GGC OCT OGC HYD NUC CSP WND WNO CPV RPV BIGCC BIGCCS

USA 55.87 146.1 77.36 180.5 38.68 60.17 146.1 17.19 180.50 21.49 13.9 13.9 55.87 150.4 223.5 32.66 111.70 15.47 44.70 72.17 169.8
CAN 55.87 146.1 77.36 180.5 38.68 60.17 146.1 17.19 180.50 21.49 13.9 13.9 55.87 150.4 223.5 32.66 111.70 15.47 44.70 72.17 169.8
EUR 51.57 141.8 77.36 176.2 38.68 51.57 141.8 17.19 176.20 21.49 13.9 13.9 51.57 137.5 197.7 34.38 64.47 10.31 15.47 72.17 169.8
OECD 60.17 150.4 85.96 189.1 47.28 60.17 150.4 17.19 189.10 25.79 13.9 13.9 51.57 193.4 223.5 48.14 68.76 27.51 25.79 72.17 169.8

FSU 60.17 154.7 77.36 163.3 42.98 60.17 154.7 21.49 163.30 25.79 13.9 13.9 42.98 137.5 197.7 34.38 103.10 27.51 36.10 67.93 152.8

CHN 25.79 120.3 42.98 141.8 17.19 25.79 120.3 17.19 141.80 17.19 13.9 13.9 34.38 103.1 171.9 25.79 64.47 10.31 12.03 46.70 123.1

IND 42.98 133.2 60.17 159.0 30.08 42.98 133.2 17.19 159.00 21.49 13.9 13.9 42.98 120.3 197.7 22.35 55.87 10.31 10.31 63.68 140.1
BRA 55.87 120.3 77.36 141.8 38.68 55.87 120.3 17.19 141.80 21.49 13.9 13.9 42.98 146.1 180.5 32.66 98.85 15.47 15.47 63.68 135.9

MDE 55.87 120.3 77.36 141.8 38.68 55.87 120.3 21.49 141.80 25.79 13.9 13.9 47.28 137.5 180.5 39.54 98.85 12.03 20.63 67.93 152.8
AFR 51.57 150.4 77.36 180.5 38.68 51.57 150.4 17.19 159.00 21.49 13.9 13.9 42.98 146.1 171.9 41.26 94.55 20.63 27.51 63.68 144.3
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RAS 25.79 120.3 42.98 141.8 17.19 25.79 120.3 17.19 55.87 17.19 13.9 13.9 34.38 103.1 171.9 25.79 64.47 10.31 12.03 46.70 123.1

RAL 55.87 120.3 77.36 141.8 38.68 55.87 120.3 17.19 141.80 21.49 13.9 13.9 42.98 146.1 180.5 32.66 98.85 15.47 15.47 63.68 135.9

Sources: IEA, 2020b. For oil: Lazard, 2016.

Table 3: Variable O&M, in 2010$ per MWh

PFC PSS ICG CGS SUB USC UCS GGT GGS GGC OCT OGC HYD NUC CSP WND WNO CPV RPV BIGCC BIGCCS

4.27 4.27 3.53 3.53 4.27 4.27 4.27 3.49 2.5 2.5 3.49 2.5 0 0.93 0 0 0 0 0 13.9 13.9

Sources: Author’s calculation (mean value accross models): Tidball et al., 2010. Hyp GGS = GGC, OCT = GGT, OGC = GGS. For biomass: Lazard, 2016.

Table 4: Energy efficiency (rho), in %

PFC PSS ICG CGS SUB USC UCS GGT GGS GGC OCT OGC HYD NUC CSP WND WNO CPV RPV BIGCC BIGCCS

USA 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.40 0.51 0.59 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

CAN 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.40 0.51 0.59 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

EUR 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.40 0.51 0.59 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

OECD 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.40 0.51 0.59 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3
FSU 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.38 0.49 0.57 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

CHN 0.41 0.35 0.43 0.36 0.37 0.44 0.37 0.38 0.49 0.57 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

IND 0.40 0.31 0.41 0.36 0.36 0.40 0.33 0.38 0.48 0.56 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

BRA 0.43 0.35 0.44 0.36 0.39 0.45 0.37 0.38 0.49 0.58 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3
MDE 0.41 0.35 0.42 0.36 0.37 0.43 0.37 0.38 0.49 0.57 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

AFR 0.39 0.32 0.40 0.36 0.35 0.42 0.34 0.38 0.50 0.58 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

RAS 0.41 0.35 0.43 0.36 0.37 0.44 0.37 0.38 0.49 0.57 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

RAL 0.43 0.35 0.44 0.36 0.39 0.45 0.37 0.38 0.49 0.58 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

Sources: IEA, 2020b. For oil : Lazard, 2016.

Table 5: Availability factor (for dispatchable plants)/ Load factor (for variable renewable plants), in %

PFC PSS ICG CGS SUB USC UCS GGT GGS GGC OCT OGC HYD NUC CSP WND WNO CPV RPV BIGCC BIGCCS

USA 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.37 1 0.28 0.42 0.41 0.21 0.16 0.83 0.83

CAN 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.56 1 0.30 0.42 0.41 0.13 0.11 0.83 0.83
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RAS 25.79 120.3 42.98 141.8 17.19 25.79 120.3 17.19 55.87 17.19 13.9 13.9 34.38 103.1 171.9 25.79 64.47 10.31 12.03 46.70 123.1

RAL 55.87 120.3 77.36 141.8 38.68 55.87 120.3 17.19 141.80 21.49 13.9 13.9 42.98 146.1 180.5 32.66 98.85 15.47 15.47 63.68 135.9

Sources: IEA, 2020b. For oil: Lazard, 2016.
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PFC PSS ICG CGS SUB USC UCS GGT GGS GGC OCT OGC HYD NUC CSP WND WNO CPV RPV BIGCC BIGCCS

4.27 4.27 3.53 3.53 4.27 4.27 4.27 3.49 2.5 2.5 3.49 2.5 0 0.93 0 0 0 0 0 13.9 13.9

Sources: Author’s calculation (mean value accross models): Tidball et al., 2010. Hyp GGS = GGC, OCT = GGT, OGC = GGS. For biomass: Lazard, 2016.

Table 4: Energy efficiency (rho), in %

PFC PSS ICG CGS SUB USC UCS GGT GGS GGC OCT OGC HYD NUC CSP WND WNO CPV RPV BIGCC BIGCCS

USA 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.40 0.51 0.59 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

CAN 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.40 0.51 0.59 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

EUR 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.40 0.51 0.59 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

OECD 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.40 0.51 0.59 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3
FSU 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.38 0.49 0.57 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

CHN 0.41 0.35 0.43 0.36 0.37 0.44 0.37 0.38 0.49 0.57 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

IND 0.40 0.31 0.41 0.36 0.36 0.40 0.33 0.38 0.48 0.56 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

BRA 0.43 0.35 0.44 0.36 0.39 0.45 0.37 0.38 0.49 0.58 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3
MDE 0.41 0.35 0.42 0.36 0.37 0.43 0.37 0.38 0.49 0.57 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

AFR 0.39 0.32 0.40 0.36 0.35 0.42 0.34 0.38 0.50 0.58 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

RAS 0.41 0.35 0.43 0.36 0.37 0.44 0.37 0.38 0.49 0.57 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

RAL 0.43 0.35 0.44 0.36 0.39 0.45 0.37 0.38 0.49 0.58 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

Sources: IEA, 2020b. For oil : Lazard, 2016.

Table 5: Availability factor (for dispatchable plants)/ Load factor (for variable renewable plants), in %

PFC PSS ICG CGS SUB USC UCS GGT GGS GGC OCT OGC HYD NUC CSP WND WNO CPV RPV BIGCC BIGCCS

USA 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.37 1 0.28 0.42 0.41 0.21 0.16 0.83 0.83

CAN 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.56 1 0.30 0.42 0.41 0.13 0.11 0.83 0.83
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RAS 25.79 120.3 42.98 141.8 17.19 25.79 120.3 17.19 55.87 17.19 13.9 13.9 34.38 103.1 171.9 25.79 64.47 10.31 12.03 46.70 123.1

RAL 55.87 120.3 77.36 141.8 38.68 55.87 120.3 17.19 141.80 21.49 13.9 13.9 42.98 146.1 180.5 32.66 98.85 15.47 15.47 63.68 135.9

Sources: IEA, 2020b. For oil: Lazard, 2016.

Table 3: Variable O&M, in 2010$ per MWh

PFC PSS ICG CGS SUB USC UCS GGT GGS GGC OCT OGC HYD NUC CSP WND WNO CPV RPV BIGCC BIGCCS

4.27 4.27 3.53 3.53 4.27 4.27 4.27 3.49 2.5 2.5 3.49 2.5 0 0.93 0 0 0 0 0 13.9 13.9

Sources: Author’s calculation (mean value accross models): Tidball et al., 2010. Hyp GGS = GGC, OCT = GGT, OGC = GGS. For biomass: Lazard, 2016.

Table 4: Energy efficiency (rho), in %

PFC PSS ICG CGS SUB USC UCS GGT GGS GGC OCT OGC HYD NUC CSP WND WNO CPV RPV BIGCC BIGCCS

USA 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.40 0.51 0.59 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

CAN 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.40 0.51 0.59 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

EUR 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.40 0.51 0.59 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

OECD 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.40 0.51 0.59 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3
FSU 0.43 0.36 0.44 0.36 0.39 0.45 0.38 0.38 0.49 0.57 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

CHN 0.41 0.35 0.43 0.36 0.37 0.44 0.37 0.38 0.49 0.57 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

IND 0.40 0.31 0.41 0.36 0.36 0.40 0.33 0.38 0.48 0.56 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

BRA 0.43 0.35 0.44 0.36 0.39 0.45 0.37 0.38 0.49 0.58 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3
MDE 0.41 0.35 0.42 0.36 0.37 0.43 0.37 0.38 0.49 0.57 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

AFR 0.39 0.32 0.40 0.36 0.35 0.42 0.34 0.38 0.50 0.58 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

RAS 0.41 0.35 0.43 0.36 0.37 0.44 0.37 0.38 0.49 0.57 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

RAL 0.43 0.35 0.44 0.36 0.39 0.45 0.37 0.38 0.49 0.58 0.34 0.45 1 0.36 0 0 0 0 0 0.4 0.3

Sources: IEA, 2020b. For oil : Lazard, 2016.

Table 5: Availability factor (for dispatchable plants)/ Load factor (for variable renewable plants), in %

PFC PSS ICG CGS SUB USC UCS GGT GGS GGC OCT OGC HYD NUC CSP WND WNO CPV RPV BIGCC BIGCCS

USA 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.37 1 0.28 0.42 0.41 0.21 0.16 0.83 0.83

CAN 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.56 1 0.30 0.42 0.41 0.13 0.11 0.83 0.83
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EUR 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.39 1 0.30 0.28 0.49 0.13 0.11 0.83 0.83
OECD 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.34 1 0.38 0.34 0.45 0.20 0.14 0.83 0.83
FSU 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.39 1 0.30 0.25 0.37 0.12 0.09 0.83 0.83

CHN 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.39 1 0.28 0.25 0.32 0.17 0.13 0.83 0.83

IND 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.37 1 0.26 0.26 0.29 0.20 0.15 0.83 0.83
BRA 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.48 1 0.28 0.44 0.46 0.20 0.16 0.83 0.83
MDE 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.18 1 0.30 0.30 0.32 0.21 0.17 0.83 0.83
AFR 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.46 1 0.30 0.26 0.37 0.21 0.17 0.83 0.83

RAS 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.34 1 0.28 0.25 0.32 0.17 0.13 0.83 0.83
RAL 0.83 0.83 0.82 0.82 0.83 0.83 0.83 0.91 0.84 0.84 0.91 0.84 0.52 1 0.28 0.44 0.46 0.20 0.16 0.83 0.83

Sources: IEA, 2020b. Australia values used for the OECD Pacific region when available (WND,WNO,CPV,CSP): IEA, 2020a. For hydro, author’s calculation: Keramidas, K. et al.,
2018.

Table 6: Lifetimes, in year

PFC PSS ICG CGS SUB USC UCS GGT GGS GGC OCT OGC HYD NUC CSP WND WNO CPV RPV BIGCC BIGCCS

40 40 40 40 40 40 40 30 30 30 20 20 80 60 25 25 25 25 25 50 50
40 40 40 40 40 40 40 30 30 30 20 20 80 60 25 25 25 25 25 50 50
40 40 40 40 40 40 40 30 30 30 20 20 80 60 25 25 25 25 25 50 50
40 40 40 40 40 40 40 30 30 30 20 20 80 60 25 25 25 25 25 50 50
40 40 40 40 40 40 40 30 30 30 20 20 80 60 25 25 25 25 25 50 50

40 40 40 40 40 40 40 30 30 30 20 20 80 60 25 25 25 25 25 50 50

40 40 40 40 40 40 40 30 30 30 20 20 80 60 25 25 25 25 25 50 50
40 40 40 40 40 40 40 30 30 30 20 20 80 60 25 25 25 25 25 50 50
40 40 40 40 40 40 40 30 30 30 20 20 80 60 25 25 25 25 25 50 50
40 40 40 40 40 40 40 30 30 30 20 20 80 60 25 25 25 25 25 50 50

40 40 40 40 40 40 40 30 30 30 20 20 80 60 25 25 25 25 25 50 50
40 40 40 40 40 40 40 30 30 30 20 20 80 60 25 25 25 25 25 50 50

Sources: IEA, 2020a. For biomass: Tidball et al., 2010. For oil: Lazard, 2016.

Table 7: Learning rates, in %

PFC PSS ICG CGS SUB USC UCS GGT GGS GGC OCT OGC HYD NUC CSP WND WNO CPV RPV BIGCC BIGCCS
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0 0.1 0.1 0.1 0 0 0.1 0 0.1 0 0 0 0 0 0.1 0.05 0.15 0.2 0.2 0.1 0.1

Sources: IEA, 2021.

8.2 Sensibility analysis : logit exponent

Figure 12 shows the electricity market share for variable renewable energy sources (solar and wind, including CSP) under different values for
the γ parameter corresponding to the exponent of the first logit nest (3). The value used by default in IMACLIM-R is γ = 3.

Figure 12: World electricity market share for renewable energy sources, NDC scenario
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Sensibility analysis: logit exponent

Figure 12 shows the electricity market share for variable renewable energy sources (solar and wind, including 
CSP) under different values for   the g parameter corresponding to the exponent of the first logit nest (3).      
The value used by default in IMACLIM-R is g = 3.
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Regional disaggregation

8.3 Regional disaggregation

Figure 13: Regional disaggregation of IMACLIM-R model, (Bibas et al., 2016)
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Figure 13:
 Regional disaggregation of IMACLIM-R model, (Bibas et al., 2016)
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